【题目】阅读理解并填空:
(1)为了求代数式 的值,我们必须知道x的值.若x=1,则这个代数式的值为;若x=2,则这个代数式的值为 , ……可见,这个代数式的值因x的取值不同而变化.尽管如此,我们还是有办法来考虑这个代数式的值的范围.
(2)把一个多项式进行部分因式分解可以解决求代数式的最大(或最小)值问题.例如: =( ) = ,因为 是非负数,所以,这个代数式 的最小值是 , 这时相应的x的平方是.
尝试探究并解答:
(3)求代数式 的最小值,并写出相应x的值.
(4)求代数式 的最大值,并写出相应x的值.
(5)已知 ,且x的值在数1~4(包含1和4)之间变化,试探求此时y的不同变化范围(直接写出当x在哪个范围变化时,对应y的变化范围).
【答案】
(1)6;11
(2)2;1
(3)
解: =(x-12x+36)+1=(x-6)2+1,
因为(x-6)2是非负数,
所以当x-6=0时,即x=6时,
有最小值,最小值为1.
(4)
解: =-(x2+6x+9)+2=-(x+3)2+2,
因为-(x+3)2≤0,
所以当x+3=0时,即x=-3时,
有最大值2.
(5)
解: =-(x-3)2+6,
当x=3时,y有最大值为6;
当x=1时,y=2;
当x=4时,y=5.
故当x的值在数1~3(包含1和3)之间变化时,y的值在2~6(包含2和6)之间变化;
当x的值在数3~4(包含4和5)之间变化时,y的值在5~6(包含5和6)之间变化.
【解析】(1)当x=1时, =1+2+3=6;
当x=2时, =4+4+3=11;
所以答案是6|11;
2)由题得 =( ) = ,
因为 ≥0,
所以 ≥2,仅当x=-1时, 取最小值为2,此时x2=1.
所以答案是2|1.
【考点精析】利用代数式求值和多项式对题目进行判断即可得到答案,需要熟知求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入;几个单项式的和叫多项式.
科目:初中数学 来源: 题型:
【题目】阅读下列文字:
我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2 .
请解答下列问题:
(1)写出图2中所表示的数学等式;
(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片, ①请按要求利用所给的纸片拼出一个几何图形,并画在图3所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2 ,
②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们进入中学以来,已经学习过不少有关数据的统计量,例如_____________________等,它们分别从不同的侧面描述了一组数据的特征.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(山东泰安,第27题)(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.
(1)求证:ACCD=CPBP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.两直线被第三条直线所截得的同位角相等
B.两直线被第三条直线所截得的同旁内角互补
C.两平行线被第三条直线所截得的同位角的平分线互相垂直
D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 2016湖北鄂州第23题)某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10 x元(x为整数)。
⑴(2分)直接写出每天游客居住的房间数量y与x的函数关系式。
⑵(4分)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?
⑶(4分)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人。问:这天宾馆入住的游客人数最少有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com