【题目】如图,,,点在轴上,且.
(1)求点的坐标,并画出;
(2)求的面积;
(3)在轴上是否存在点,使以三点为顶点的三角形的面积为10?若存在,请直接写出点的坐标;若不存在,请说明理由.
【答案】(1)点的坐标为,,画图见解析;(2) 6;(3)点的坐标为或
【解析】
(1)分点B在点A的左边和右边两种情况解答;
(2)利用三角形的面积公式列式计算即可得解;
(3)利用三角形的面积公式列式求出点P到x轴的距离,然后分两种情况写出点P的坐标即可.
(1)点B在点A的右边时,-1+3=2,
点B在点A的左边时,-1-3=-4,
所以,B的坐标为(2,0)或(-4,0),
如图所示:
(2)△ABC的面积=×3×4=6;
(3)设点P到x轴的距离为h,
则×3h=10,
解得h=,
点P在y轴正半轴时,P(0,),
点P在y轴负半轴时,P(0,-),
综上所述,点P的坐标为(0,)或(0,-).
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AC=BC,D,E分别为AB,BC上一点,∠CDE=∠A.
(1)如图1,若BC=BD,∠ACB=90°,则∠DEC度数为_________°;
(2)如图2,若BC=BD,求证:CD=DE;
(3)如图3,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.
(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);
(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )
A. B. 1C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.
(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知⊙O的直径为10cm,点A为⊙O外一定点,OA=12cm,点P为⊙O上一动点,求PA的最大值和最小值.
(2)如图:=,D、E分别是半径OA和OB的中点.求证:CD=CE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】[问题情境]
已知矩形的面积为一定值1,当该矩形的一组邻边分别为多少时,它的周长最小?最小值是多少?
[数学模型]
设该矩形的一边长为x,周长为L,则L与x的函数表达式为 .
[探索研究]
小彬借鉴以前研究函数的经验,先探索函数的图象性质.
(1)结合问题情境,函数的自变量x的取值范围是 ,
如表是y与x的几组对应值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①直接写出m的值;
②画出该函数图象,结合图象,得出当x= 时,y有最小值,y的最小值为 .
[解决问题]
(2)直接写出“问题情境”中问题的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个矩形ABCD的较短边长为2.
(1)如图①,若沿长边对折后得到的矩形与原矩形相似,求它的另一边长;
(2)如图②,已知矩形ABCD的另一边长为4,剪去一个矩形ABEF后,余下的矩形EFDC与原矩形相似,求余下矩形EFDC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题情境)
如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.
(探究展示)
(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.
(2)如图2,若点E是BC的上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.
(拓展延伸)
(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com