精英家教网 > 初中数学 > 题目详情

【题目】(1)已知⊙O的直径为10cm,点A为⊙O外一定点,OA=12cm,点P为⊙O上一动点,求PA的最大值和最小值.

(2)如图:=,D、E分别是半径OAOB的中点.求证:CD=CE.

【答案】(1)最大值为17cm,最小值为7cm;(2)证明见解析.

【解析】

(1)先由直径为10cm,可求半径为5cm,PA取得最大值是当点P在线段OA的延长线上时,由OA=12cm,可得PA的最大值为12+5=17cm,PA取得最小值是当点P在线段OA上时,可得PA的最小值为12-5=7cm;

(2)连接CO,由D、E分别是半径OAOB的中点,可得OD=OE,由=,可得∠COD=∠COE,然后根据SAS可证△COD≌△COE,然后根据全等三角形的对应边相等即可得到CD=CE.

(1)解:∵⊙O的直径为10cm,

∴⊙O的半径为10÷2=5(cm),

当点P在线段OA的延长线上时,PA取得最大值,当点P在线段OA上时,PA取得最小值

OA=12cm,

PA的最大值为12+5=17cm,PA的最小值为12﹣5=7cm;

(2)证明:连接CO,如图所示,

OA=OB,且D、E分别是半径OAOB的中点,

OD=OE,

又∵=

∴∠COD=COE,

在△COD和△COE中,

∴△COD≌△COE(SAS),

CD=CE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料,完成(1)-(3)题.

数学课上,老师出示了这样一道题:

如图1,已知等腰△ABC中,ABACADBC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EFAFDF之间的数量关系,并证明.

同学们经过思考后,交流了自已的想法:

小明:通过观察和度量,发现∠DFC的度数可以求出来.

小强:通过观察和度量,发现线段DFCF之间存在某种数量关系.

小伟:通过做辅助线构造全等三角形,就可以将问题解决.

......

老师:若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EFAFDF三者的数量关系,并证明你的结论.

1)求∠DFC的度数;

2)在图1中探究线段EFAFDF之间的数量关系,并证明;

3)在图2中补全图形,探究线段EFAFDF之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,对角线AC上取一点E,连接BE,过BBE的垂线交CA的延长线于F,垂足为B,将△BEF沿BF翻折得到BGF,连接GC.若tan∠EFG,则GC_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合)。若四边形OBCD是平行四边形时,那么的数量关系是________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点轴上,且.

(1)求点的坐标,并画出;

(2)的面积;

(3)轴上是否存在点,使以三点为顶点的三角形的面积为10?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,BC=2AB,点EF分别是BCAD的中点,AEBF交于点O,连接EFOC

1)求证:四边形ABEF是菱形;

2)若AB=4,∠ABC=60°,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.

1)请用列表或画树状图的方法表示出上述试验所有可能结果;

2)求一次打开锁的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,,点的中点,平分.

1)求证:

2)若,试判断的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等腰直角三角形中,,边上,连接,连接

1)求证:

2)点关于直线的对称点为,连接

①补全图形并证明

②利用备用图进行画图、试验、探究,找出当三点恰好共线时点的位置,请直接写出此时的度数,并画出相应的图形

查看答案和解析>>

同步练习册答案