精英家教网 > 初中数学 > 题目详情

【题目】为响应双十二购物狂欢节活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由三种饼干搭配而成,每袋礼包的成本均为三种饼干成本之和.每袋甲类礼包有5种饼干、2种饼干、8种饼干;每袋丙类礼包有7种饼干、1种饼干、4种饼干.已知甲每袋成本是该袋中种饼干成本的3倍,利润率为,每袋乙的成本是其售价的,利润是每袋甲利润的;每袋丙礼包利润率为.若该网店1212日当天销售甲、乙、丙三种礼包袋数之比为,则当天该网店销售总利润率为__________.

【答案】25%

【解析】

设每包ABC三种饼干的成本分别为xyz,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.

解:设每包ABC三种饼干的成本分别为xyz,依题意得:

5x+2y+8z=15x

5x=y+4z

由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x

∵每袋乙的成本是其售价的,利润是每袋甲利润

可知每袋乙礼包的利润是:4.5x×=2x

则乙礼包的售价为12x,成本为10x

由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x

∵每袋丙礼包利润率为:25%

∴丙礼包的售价为15x,成本为12x

∵甲、乙、丙三种礼包袋数之比为465

∴总利润率是25%

故答案为:25%

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC三个顶点的位置如图(每个小正方形的边长均为1)

(1)请画出△ABC沿轴向右平移3个单位长度,再沿轴向上平移2个单位长度后的(其中分别是ABC的对应点,不写画法)

(2)直接写出三点的坐标;

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点FFGCD,交AE于点G,连接DG

(1)求证:四边形DEFG为菱形;

(2)若CD=8,CF=4,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k 为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.
(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;
(2)把“矩数”p与“矩数”q的差记为 D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则 D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当 D(p,q)=30时,求 的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商贸公司有两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:

体积(立方米/件)

质量(吨/件)

型商品

08

05

型商品

2

1

1)已知一批商品有两种型号,体积一共是20立方米,质量一共是105吨,求两种型号商品各有几件?

2)物资公司现有可供使用的货车每辆额定载重35吨,容积为6立方米,其收费方式有以下两种:

车收费:每辆车运输货物到目的地收费600元;

②按吨收费:每吨货物运输到目的地收费200元.

现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC面积为1,第一次操作:分别延长ABBCCA至点A1B1C1,使A1BABB1CBCC1ACA,顺次连接A1B1C1,得到△A1B1C1.第二次操作:分别延长A1B1B1C1C1A1至点A2B2C2,使A2B1A1B1B2C1B1C1C2A1C1A1,顺次连接A2B2C2,得到△A2B2C2按此规律,要使得到的三角形的面积超过2019,最少经过(  )次操作.

A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个多位自然数的任意两个相邻数位上,右边数位上的数总比左边数位上的数大1,则我们称这样的自然数叫“美数”,例如:123345667,…都是“美数”.

1)若某个三位“美数”恰好等于其个位的76倍,这个“美数”为   

2)证明:任意一个四位“美数”减去任意一个两位“美数”之差再减去1得到的结果定能被11整除;

3)如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大1,则我们称这样的自然数叫“妙数”,若任意一个十位为为整数)的两位“妙数”和任意一个个位为为整数)的两位“美数”之和为55,则称两位数为“美妙数”,并把这个“美妙数”记为,则求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(2,m)是第一象限内一点,连接OA,将OA绕点A逆时针旋转90°得到线段AB,若反比例函数y= (x>0)的图象恰好同时经过点A、B,则k的值为

查看答案和解析>>

同步练习册答案