【题目】如图1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求证:BE=AD;
(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.
【答案】(1)见解析(2)△CPQ为等腰直角三角形,理由见解析
【解析】
(1)易证△ACD≌△BCE,即可求证;
(2)先证明△ACP≌△BCQ,得CP=CQ,∠ACP=∠BCQ,再由∠ACB=90°,得出△PCQ为等腰直角三角形.
(1)如图1,∵∠ACB=∠DCE=α,
∴∠ACD=∠BCE,
又CA=CB,CD=CE,
∴△ACD≌△BCE(SAS)
∴BE=AD;
(2)△CPQ为等腰直角三角形,
证明如图2,由(1)得BE=AD,
∵AD,BE的中点分别为点P、Q,
∴AP=BQ
∵△ACD≌△BCE
∴∠CAP=∠CBQ,
在△ACP和△BCQ中
∴△ACP≌△BCQ(SAS)
∴CP=CQ,且∠ACP=∠BCQ
又∵∠ACP+∠PCB=90°,
∴∠BCQ+∠PCB=90°,
∴∠PCQ=90°,
∴△CPQ为等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G,
求证:(1)DF∥BC;
(2)FG=FE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图.根据图中信息解答下列问题:
(1)求销售这三种品牌粽子共多少个?
(2)请补全图1中的条形统计图;
(3)求A品牌粽子在图2中所对应的圆心角的度数;
(4)若该商场准备明年端午节期间购进粽子6000个,那应该对A、B、C三种品牌何进货?请你提出一条合理化的建议
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料后完成.
有这样一个游戏,游戏规则如下所述:如图①—图④,都是边 长为的网格图,其中每条实线称为格线,格线与格线的交 点称为格点.在图①和图②中,可知.在图③ 和图④中,可知. 根据上面的游戏规则,同学们开始闯关吧! 第一关:在图⑤的网格图中,所给各点均为格点,经过 给定的一点(不包括边框上的点),在图中画出一条与线段垂直 的线段(或者直线),再画出与线段平行的一条线段(或者 直线). 第二关:在图⑥的网格图中,所给各点均为格点,经过 两对给定的点,构造两条互相垂直的直线.(在图中直接画出)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,,点是直线上一个动点(不与重合),点是边上一个定点, 过点作,交直线于点,连接,过点作,交直线于点.
如图①,当点在线段上时,求证:.
在的条件下,判断这三个角的度数和是否为一个定值? 如果是,求出这个值,如果不是,说明理由.
如图②,当点在线段 的延长线上时,(2)中的结论是否仍然成立?如果不成立, 请直接写出之间的关系.
)当点在线段的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接 写出之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD相交于点O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度数;
(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在学习三角形知识时,发现如下三个有趣的结论:在中,,平分,为直线上一点,,为垂足,的平分线交直线于点,回答下列问题并说明.(可在图上标注数字角)
(1)如图①,为边上一点,则、的位置关系是________.请给予证明;
(2)如图②,为边反向延长线上一点,则、的位置关系是________.(请直接写出结论)
(3)如图③,为边延长线上一点,则、的位置关系是________.请给予证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com