【题目】已知:如图,在△ABC中,AB=AC,∠A=36°.
(1)尺规作图:作AB的垂直平分线MN交AC于点D,连接BD;(保留作图痕迹,不写作法)
(2)求∠DBC的度数。
【答案】(1)答案见解析;(2)36°
【解析】
(1)分别以A、B点为圆心,以大于AB的长为半径作弧,两弧相交于M,N两点;作直线MN,即MN为线段AB的垂直平分线;
(2)由AB的垂直平分线MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由∠A=36°,根据等边对等角的性质,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得∠DBC的度数.
解:(1)如图:
(2)解:∵AB的垂直平分线MN交AC于D,
∴AD=BD,
∵∠A=36°,
∴∠ABD=∠A=36°,
∵AB=AC,
∴∠ABC=∠C=(180°-∠A)=72°,
∴∠DBC=∠ABC-∠ABD=72°-36°=36°.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.
(1)求抛物线的函数表达式;
(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若,且△BCG与△BCD面积相等,求点G的坐标;
(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,D,E分别在AB,AC上,AD=AE,将△ADE绕点A逆时针任意旋转.
(1)发现:如图2,连结BD,CE,若∠BAC=60°,D点恰在线段BE上,则∠BEC= °;
(2)探究:如图3,连结BD,CE,并交于点F,求证:∠BFC=∠BAC;
(3)拓展:如图4,若∠BAC=90°,AB=5,AD=2,连结CD,BE,请直接写出四边形BCDE的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,□ABCD的对角线交于点O,点E在边BC的延长线上,且OE=OB,连接DE.
(1)求证:△BDE是直角三角形;
(2)如果OE⊥CD,试判断△BDE与△DCE是否相似,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(5,0)和点B(0,4).
(1)求直线AB所对应的函数表达式;
(2)设直线y=x与直线AB相交于点C,求△BOC的面积;
(3)若将直线OC沿x轴向右平移,交y轴于点O′,当△AB O′为等腰三角形时,直接写出点O′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=kx2+2kx﹣3k(k≠0),的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OC=OA.
(1)点A坐标为 ,点B坐标为 ,抛物线的解析式为 ;
(2)若点P是第二象限内抛物线上的一个动点,连接AP、CP,当四边形ABCP的面积最大时,求点P的坐标;
(3)若点Q(0,m)是y轴上的动点,连接AQ、BQ,
①当∠AQB是钝角时,求m的取值范围;
②当∠AQB=60°时,则m= .(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一枚均匀的正方体骰子,六个面分别标有数字:1,2,3,4,5,6.如果用小刚抛掷正方体骰子朝上的数字x,小强抛掷正方体骰子朝上的数字y来确定点P(x,y),那么他们各抛掷一次所确定的点P落在已知直线y=﹣2x+7图象上的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,己知,A(0, 4),B (t,0)分别在y轴,x轴上,连接AB,以AB为直角边分别作等腰Rt△ABD和等腰Rt△ABC.直线BC交y轴于点E. 点G(-2,3)、H(-2,1)在第二象限内.
(1)当t =-3时,求点D的坐标.
(2)若点G、H位于直线AB的异侧,确定t的取值范围.
(3)①当t取何值时,△ABE与△ACE的面积相等.
②在①的条件下,在x轴上是否存在点P,使△PCB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com