【题目】如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E,若AB=6,
(1)BC=_____;
(2)△AEC的面积为_____.
【答案】2, 4
【解析】
(1)根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,即可求出BC的长;
(2)在(1)的条件下,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.
(1)∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,
∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,
∵AB=6,
∴BC=AB=2,
(2)∵∠DAC=60°,
∴∠DAD′=60°,
∴∠DAE=30°,
∴∠EAC=∠ACD=30°,
∴AE=CE,
在Rt△ADE中,设AE=EC=x,则有
DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,
根据勾股定理得:x2=(6﹣x)2+(2)2,
解得:x=4,
∴EC=4,
则S△AEC=ECAD=4.
故答案为:2;4.
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于A(2,1),B(-1,)两点.
(1)求m、k、b的值;
(2)连接OA、OB,计算三角形OAB的面积;
(3)结合图象直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与x轴有 个交点,所以对应的方程x2﹣2|x|=0有 个实数根;
②方程x2﹣2|x|=2有 个实数根.
③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:
①;
②;
③方程的两个根是;
④方程有一个实根大于;
⑤当时,随增大而增大.
其中结论正确的个数是( )
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实行垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费万元,购买乙型智能设备花费万元,购买的两种设备数量相同,且两种智能设备的单价和为万元.
求甲、乙两种智能设备单价;
垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的,且生产每吨燃料棒所需人力成本比物资成本的倍还多元.调查发现,若燃料棒售价为每吨元,平均每天可售出吨,而当销售价每降低元,平均每天可多售出吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到元,且保证售价在每吨元基础上降价幅度不超过,求每吨燃料棒售价应为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,连结EB交OD于点F.
(1)求证:OD⊥BE;
(2)若DE=,AB=,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2﹣x+c与x轴交于A,B两点,且点B的坐标为(3,0),与y轴交于点C,连接AC,BC,点P是抛物线上在第二象限内的一个动点,点P的横坐标为a,过点P作x轴的垂线,交AC于点Q.
(1)求A,C两点的坐标.
(2)请用含a的代数式表示线段PQ的长,并求出a为何值时PQ取得最大值.
(3)试探究在点P运动的过程中,是否存在这样的点Q,使得以B,C,Q为顶点的三角形是等腰三角形?若存在,请写出此时点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于两点,与轴交于点.
(1)求此抛物线的表达式及顶点的坐标;
(2)若点是轴上方抛物线上的一个动点(与点不重合),过点作轴于点,交直线于点,连结.设点的横坐标为.
①试用含的代数式表示的长;
②直线能否把分成面积之比为1:2的两部分?若能,请求出点的坐标;若不能,请说明理由.
(3)如图2,若点也在此抛物线上,问在轴上是否存在点,使?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=45°,BC=5,AC=2,D是BC边上的动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接EC.
(1)如图a,求证:CE⊥BC;
(2)连接ED,M为AC的中点,N为ED的中点,连接MN,如图b.
①写出DE、AC,MN三条线段的数量关系,并说明理由;
②在点D运动的过程中,当BD的长为何值时,M,E两点之间的距离最小?最小值是 ,请直接写出结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com