【题目】某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下:如图,两侧最长斜拉索,相交于点,分别与桥面交于,两点,且点,,在同一竖直平面内.测得,,米,请帮助该小组根据测量数据,求斜拉索顶端点到的距离.(参考数据:,,,,,.)
科目:初中数学 来源: 题型:
【题目】抛物线的对称轴为直线,图象过点,部分图象如图所示,下列判断:①;②;③;④若点,均在抛物线上,则,其中正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线.
(1)求抛物线的对称轴(用含的式子去表示);
(2)若点,,都在抛物线上,则、、的大小关系为_______;
(3)直线与轴交于点,与轴交于点,过点作垂直于轴的直线与抛物线有两个交点,在抛物线对称轴右侧的点记为,当为钝角三角形时,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,抛物线与轴交于点两点,与轴交于点,直线经过点,与抛物线另一个交点为,点是抛物线上的一个动点,过点作轴于点,交直线于点
(1)求抛物线的解析式
(2)当点在直线上方,且是以为腰的等腰三角形时,求的坐标
(3)如图2所示,若点为对称轴右侧抛物线上一点,连接,以为直角顶点,线段为较长直角边,构造两直角边比为的,是否存在点,使点恰好落在直线上?若存在,请直接写出相应点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂有20名工人,每人每天加工甲种零件5个或乙种零件4个.在这20名工人当中,派x人加工甲种零件,其余的加工乙种零件,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可以获利24元.
(1)写出此工厂每天所获利润y(元)与x(人)之间的函数关系式(只写出解析式)
(2)若要使工厂每天获利不低于1800元,问至少要派多少人加工乙种零件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年9月17日世界人工智能大会在.上海召开,人工智能的变革力在教育、制造等领域加速落地.在某市举办的一次中学生机器人足球赛中,有四个代表队进入决赛,决赛中,每个队分别与其它三个队进行主客场比赛各一场(即每个队要进行6场比赛),以下是积分表的一-部分.
(说明:积分=胜场积分十平场积分+负场积分)
(1)D代表队的净胜球数m=______;
(2)本次决赛中,胜一场积______分,平一场积______分,负一场积_______分;
(3)此次竞赛的奖金分配方案为:进入决赛的每支代表队都可以获得参赛奖金6000元;另外,在决赛期间,每胜一场可以再获得奖金2000元,每平一场再获得奖金1000元.请根据表格提供的信息,求出冠军A队一共能获得多少奖金.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出
(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB ∠ACB(填“>”“<”“=”);
问题探究
(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;
问题解决
(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com