【题目】在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.
(1)如图1,若DE=5,则∠DEG=______°;
(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;
(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为______.
【答案】(1)45;(2)见解析,EG=4+2;(3)2
【解析】
(1)由题意可得AE=AB=3,可得∠AEB=∠ABE=45°,由矩形的性质可得AD∥BC,可得∠AEB=∠EBF=45°,∠EFB=∠GED,结合等腰三角形的性质,即可求解;
(2)由题意画出图形,可得∠F=∠5=60°,可得∠6=∠G=30°,由直角三角形的性质可得AE=,DE=2+,由直角三角形的性质可得EG的长;
(3)由平行四边形的性质可得EF=BD,ED=BF,由等腰三角形的性质可得AE=AD=2,由勾股定理可求EF=BE=,由EH∥CG∥BM,H是BF的中点,B是HC的中点,即可求解.
(1)∵DE=5,AB=3,AD=2,
∴AE=AB=3,
∴∠AEB=∠ABE=45°,
∵四边形ABCD是矩形,
∴AD∥CB,
∴∠AEB=∠EBF=45°,∠EFB=∠GED,
∵EF=EB,
∴∠EFB=∠EBF=45°,
∴∠GED=45°,
故答案为:45;
(2)如图1所示.
∵四边形ABCD是矩形,
∴∠1=∠2=∠3=∠ABF=∠C=90°.
∵∠4=60°,EF=EB,
∴∠F=∠5=60°.
∴∠6=∠G=30°,
∴AE=BE.
∵AB=3,
∴根据勾股定理可得:AE2+32=(2AE)2,解得:AE=,
∵AD=2,
∴DE=2+,
∴EG=2DE =4+2;
(3)如图2,连接BD,过点E作EH⊥FC,延长BA交FG于点M,
∵四边形EDBF是平行四边形,
∴EF=BD,ED=BF,
∵EF=BE,
∴EB=BD,且AB⊥DE,
∴AE=AD=2,
∴BF=DE=4,
∵EB==,
∴EF=,
∵EF=BE,EH⊥FC,
∴FH=BH=2=BC,
∴CH=4,
∵EH⊥BC,CD⊥BC,AB⊥BC,
∴EH∥CG∥BM,
∵H是BF的中点,B是HC的中点,
∴E是FM的中点,M是EG的中点,
∴EG═2EF=2
故答案为:2
科目:初中数学 来源: 题型:
【题目】如图,在中,,,直角顶点在轴上,一锐角顶点在轴上.
(1)如图1,若垂直于轴,垂足为点,点的坐标是,求点的坐标;
(2)如图2,直角边在两坐标轴上滑动,过作轴于.请猜想、、之间有怎样的关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法:①是等腰三角形,;②折叠后和一定相等;③折叠后得到的图形是轴对称图形;④和一定是全等三角形.正确的是______(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)AC⊥AB,BD⊥AB,AB=12cm,AC=BD=8cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由;
(2)在(1)的条件下,判断此时线段PC和线段PQ的位置关系,并证明;
(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.
(1)求直线y=kx+b(k≠0)的表达式;
(2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.
(1)求证:DE=CE.
(2)若∠CDE=35°,求∠A 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC经过一定的运动得到△A1B1C1,然后以点A1为位似中心将△A1B1C1放大为原来的2倍得到△A1B2C2,如果△ABC上的点P的坐标为(a,b),那么这个点在△A1B2C2中的对应点P2的坐标为 ( )
A. (a+3,b+2) B. (a+2,b+3)
C. (2a+6,2b+4) D. (2a+4,2b+6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有( )个.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,点关于轴的对称点为点,点在轴的负半轴上,的面积是.
(1)求点坐标;
(2)若动点从点出发,沿射线运动,速度为每秒个单位,设的运动时间为秒,的面积为,求与的关系式;
(3)在的条件下,同时点Q从D点出发沿轴正方向以每秒个单位速度匀速运动,若点在过点且平行于轴的直线上,当为以为直角边的等腰直角三角形时,求满足条件的值,并直接写出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com