分析 (1)根据点A和点B坐标易得△OAB为等腰直角三角形,则∠OBA=45°,由于OC∥AB,所以当C点在y轴左侧时,有∠BOC=∠OBA=45°;当C点在y轴右侧时,有∠BOC=180°-∠OBA=135°,从而得出答案;
(2)根据圆心O到AB的距离即可得到答案;
(3)由于OC=3,CF=$\frac{3}{2}$,得出∠COF=30°,则可得到BOC=60°,∠AOD=60°,然后根据“SAS”判断△BOC≌△AOD,从而得出∠BCO=∠ADO=90°,再根据切线的判定定理可确定直线BC为⊙O的切线.
解答 解:(1)∵点A(6,0),点B(0,6),
∴OA=OB=6,
∴△OAB为等腰直角三角形,
∴∠OBA=45°,
∵OC∥AB,
∴当C点在y轴左侧时,∠BOC=∠OBA=45°;
当C点在y轴右侧时,∠BOC=90°+∠OBA=135°;
综上所述:当OC∥AB时,∠BOC的度数为45°或135°,
故答案为:45°或135°.
(2)AB与⊙O相离,理由:
∵由(1)证得△OAB为等腰直角三角形,
∴点O到AB的距离=$\frac{1}{2}$AB=$\frac{1}{2}$$\sqrt{O{A}^{2}+O{B}^{2}}$=3$\sqrt{2}$>3,
∴AB与⊙O相离;![]()
(3)直线BC为为⊙O的切线,理由如下:
如图:在Rt△OCF中,OC=3,CF=$\frac{3}{2}$,
∴sin∠COF=$\frac{CF}{OC}$=$\frac{1}{2}$,
∴∠COF=30°,
∴∠OAD=30°,
∴∠BOC=60°,∠AOD=60°,
在△BOC和△AOD中,
$\left\{\begin{array}{l}{OC=OD}\\{∠BOC=∠AOD}\\{BO=AO}\end{array}\right.$,
∴△BOC≌△AOD(SAS),
∴∠BCO=∠ADO=90°,
∴OC⊥BC,
∴直线BC是⊙O的切线;
点评 本题考查了圆的综合题,用到的知识点是切线的判定定理、平行线的性质和等腰直角三角形的判定与性质;熟练运用勾股定理和相似比进行几何计算是本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 补贴数额(元) | 10 | 20 | … |
| 种植亩数(亩) | 160 | 240 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| 时间段 | 7~8点 | 8~9点 | 9~10点 | 10~11点 | 11~12点 |
| 数量/辆 | 68 | 56 | 50 | 68 | 54 |
| A. | 56,68 | B. | 68,56 | C. | 68,55 | D. | 68,50 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | abc<0 | |
| B. | 当m≠1时,a+b>am2+bm | |
| C. | 2a+b=0 | |
| D. | 若ax12+bx1=ax22+bx2且x1≠x2,x1+x2=3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com