精英家教网 > 初中数学 > 题目详情

【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:

x

﹣3

﹣2

﹣1

0

1

y

﹣6

0

4

6

6

从上表可知,下列说法正确的有多少个

①抛物线与x轴的一个交点为(﹣2,0);

②抛物线与y轴的交点为(0,6);

③抛物线的对称轴是直线x=

④抛物线与x轴的另一个交点为(3,0);

⑤在对称轴左侧,yx增大而减少.

A. 2 B. 3 C. 4 D. 5

【答案】C

【解析】

由图表可知(0,6),(1,6)是抛物线上的两个对称点,对称轴是两点横坐标的平均数,即x=,根据抛物线的对称性,逐一判断.

根据图表,抛物线与x轴的一个交点为(﹣2,0),∴①正确;

根据图表,抛物线与y轴交与(0,6),②正确;
∵抛物线经过点(0,6)和(1,6),
∴对称轴为x=
∴③正确;

设抛物线经过点(x,0),
x==
解得:x=3
∴抛物线一定经过(3,0),④正确;

在对称轴左侧,yx增大而增大∴⑤错误

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为(  )

A. 40海里 B. 60海里 C. 20海里 D. 40海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】转化是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.

(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;

(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;

(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,每个小正方形边长都是1.

(1)按要求作图:

①以坐标原点O为旋转中心,将ABC逆时针旋转90°得到A1B1C1

②作出A1B1C1关于原点成中心对称的中心对称图形A2B2C2

(2)A2B2C2中顶点B2坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC,以AB为直径的⊙OBC,ACD,E两点,过点D作⊙O的切线,交AC于点F,交AB的延长线于点G.

(1)求证:EF=CF;

(2)若cosABC=,AB=10,求线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).

(1)求反比例函数和一次函数的表达式;

(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的内切圆与各边分别相切于点,那么下列叙述错误的是( )

A. 的三条角平分线的交点 B. 的三条中线的交点

C. 的三条边的垂直平分线的交点 D. 一定是锐角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点O是等腰直角三角形ABC斜边上的中点,AB=BC,EAC上一点,连结EB.

(1) 如图1,若点E在线段AC上,过点AAMBE,垂足为M,交BO于点F.求证:OE=OF

(2)如图2,若点EAC的延长线上,AMBE于点M,交OB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(-1,0),B4,0C0,2)三点,点D与点C关于x轴对称,点Px轴上的一个动点,设点P的坐标为(m0),过点Px轴的垂线交抛物线于点Q,交直线BD于点M

1)求该抛物线所表示的二次函数的表达式;

2)已知点F0),当点Px轴上运动时,试求m为何值时,四边形DMQF是平行四边形?

查看答案和解析>>

同步练习册答案