【题目】如图,是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,n),与x轴的一个交点B(4,0),直线y2=mx+d(m≠0)与抛物线交于A,B两点,下列结论:
①3a+b=0,②方程ax2+bx+c+1=n有两个相等的实数根,③b2=4a(c﹣n),④当1<x<4时,有y2>y1,⑤ax2+bx≤a+b,其中正确的结论是____(只填写序号).
【答案】③⑤.
【解析】
利用抛物线的对称轴,可对①进行判断;结合图象可知抛物线与直线有两个公共点,可对②进行判断;由抛物线与直线,只有一个公共点(1,n),可知相应的方程ax2+bx+c=n有两个相等的实数根,利用一元二次方程根的判别式可对③进行判断;利用函数图象确定函数y2图象在y1上方时所对的x值范围,可对④进行判断;根据二次函数的最大值可对⑤进行判断.
解:∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,所以①错误;
∵抛物线的顶点为(1,n),∴抛物线y=ax2+bx+c与直线y=n﹣1有两个公共点,∴方程ax2+bx+c+1=n有两个不相等的实数根,所以②错误;
∵直线y=n与抛物线只有一个公共点(1,n),∴方程ax2+bx+c=n有两个相等的实数根,∴b2﹣4a(c﹣n)=0,即b2=4a(c﹣n),所以③正确;
∵抛物线与直线y2=mx+d(m≠0)与抛物线交于A(1,n),B(4,0),∴当1<x<4时,有y1>y2,所以④错误;
∵抛物线的顶点坐标为(1,n),∴当x=1时,函数值最大,最大值为a+b+c,∴ax2+bx+c≤a+b+c,即ax2+bx≤a+b,所以⑤正确.
故答案为:③⑤.
科目:初中数学 来源: 题型:
【题目】如图,已知一居民楼前方处有一建筑物,小敏在居民楼的顶部处和底部处分别测得建筑物顶部的仰角为和,求居民楼的高度和建筑物的高度(结果取整数).
(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,DE是⊙O的直径,点A、C是直径DE上方半圆上的两点,且AO⊥CO.连接AE,CD相交于点F,点B是直径DE下方半圆上的任意一点,连接AB交CD于点G,连接CB交AE于点H.
(1)∠ABC= ;
(2)证明:△CFH∽△CBG;
(3)若弧DB为半圆的三分之一,把∠AOC绕着点O旋转,使点C、O、B在一直线上时,如图2,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.
(1)当MN∥B′D′时,求α的大小.
(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们可以通过下列步骤估计方程x2﹣2x﹣2=0方程的根所在的范围.
第一步:画出函数y=x2﹣2x﹣2=0的图象,发现函数图象是一条连续不断的曲线,且与x轴的一个交点的横坐标在0,﹣1之间.
第二步:因为当x=0时,y=﹣2<0,当x=﹣1时,y=1>0,
所以可确定方程x2﹣2x﹣2=0的一个根x1所在的范围是﹣1<x1<0
第三步:通过取0和﹣1的平均数缩小x1所在的范围:
取x=,因为当x=对,y<0.又因为当x=﹣1时,y>0,所以
(1)请仿照第二步,通过运算验证方程x2﹣2x﹣2=0的另一个根x2所在的范围是2<x2<3
(2)在2<x2<3的基础上,重复应用第三步中取平均数的方法,将x2所在的范围缩小至a<x2<b,使得.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一矩形OABC放在平面直角坐标系中,O为原点,点B、C分别在x轴、y轴上,点A(4,3),点D为线段OC上一动点,将△BOD沿BD翻折,点O落在点E处,连接CE,则CE的最小值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形DEFG的边EF在△ABC的边BC上,顶点D,G分别在边AB,AC上,AH⊥BC,垂足为H,AH交DG于点P,已知BC=6,AH=4.当矩形DEFG面积最大时,HP的长是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据学习函数的经验,探究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:
(1)下表给出了部分x,y的取值;
x | L | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | L |
y | L | 3 | 0 | ﹣1 | 0 | 3 | 0 | ﹣1 | 0 | 3 | L |
由上表可知,a= ,b= ;
(2)用你喜欢的方式在坐标系中画出函数y=x2+ax﹣4|x+b|+4的图象;
(3)结合你所画的函数图象,写出该函数的一条性质;
(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,请直接写出m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com