【题目】发现 对于2,4,6三个连续的偶数来说,可以得到;即前两个偶数的和等于第三个偶数;对于8,10,12,14,16五个连续的偶数来说,可以得到,即前三个偶数的和等于后两个偶数的和.…
验证 对于九个连续偶数来说,若前五个偶数的和等于后四个偶数的和,则中间的偶数是_______;
延伸 是否存在连续的五个奇数,使得前三个奇数的和等于后两个奇数的和.若有,写出这五个奇数;若没有,请说明理由.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数(k≠0)的图象过点C,则该反比例函数的表达式为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+3x+2与y轴交于点A,点B是抛物线的顶点,点C与点A是抛物线上关于对称轴对称的两个点,点D在x轴上运动,则四边形ABCD的两条对角线的长度之和的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在2019年植树节这一天,某校组织300名七年级学生,200名八年级学生,100名九年级学生参加义务植树活动.图甲是根据植树情况绘制成的条形统计图.
请根据题中提供的信息解答下列问题.
(1)参加植树的学生平均每人植树多少棵?
(2)图2是小明同学尚未完成的各年级植树情况的扇形统计图,请你把它补充完整(要求标注圆心角度数);
(3)若该种树苗在正常情况下的成活率为85%,则今后还需补种多少棵树?(补种树苗的成活率也为85%)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2)求证:EG2=GFAF;
(3)若AB=4,BC=5,求GF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“过直线上一点作这条直线的垂线”的尺规作图过程.
已知:直线l及直线l上一点P.
求作:直线PQ,使得PQ⊥l.
作法:如图,
①在直线l上取一点A(不与点P重合),分别以点P,A为圆心,AP长为半径画弧,两弧在直线l的上方相交于点B;
②作射线AB,以点B为圆心,AP长为半径画弧,交AB的延长线于点Q;
③作直线PQ.
所以直线PQ就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接BP,
∵ = = =AP,
∴点A,P,Q在以点B为圆心,AP长为半径的圆上.
∴∠APQ=90°( ).(填写推理的依据)
即PQ⊥l.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解学生对新闻,体育,娱乐,动画四类电视节目的喜爱情况,进行了统计调查.随机调查了某班所有同学最喜欢的节目(每名学生必选且只能选择四类节目中的一类),并将调查结果绘成如下不完整的统计图.
根据两图提供的信息,回答下列问题:
(1)本次调查了多少人?
(2)请补全条形统计图;
(3)根据抽样调查结果,若该校有1000名学生,请你估计该校有多少名学生最喜欢“新闻”类节目;
(4)在全班同学中,甲,乙,丙,丁等同学最喜欢体育类节,班主任打算从甲,乙,丙,丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲,乙两同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,O为AC的中点,直线EF经过点O,并且与AB交于点E,与DC交于点F,∠DFE=∠BFE.
(1)求证:四边形DEBF是菱形;
(2)若AD=4,AB=8,则线段EF的长是_______.(直接写出答案即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com