【题目】在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.
(1)若AB=2 ,求BC的长;
(2)如图1,当点G在AC上时,求证:BD= CG;
(3)如图2,当点G在AC的垂直平分线上时,直接写出 的值.
【答案】
(1)
解:如图1中,过点A作AH⊥BC于H.
∴∠AHB=∠AHC=90°,
在RT△AHB中,∵AB=2 ,∠B=45°,
∴BH=ABcosB=2 × =2,
AH=ABsinB=2,
在RT△AHC中,∵∠C=30°,
∴AC=2AH=4,CH=ACcosC=2 ,
∴BC=BH+CH=2+2
(2)
证明:如图1中,
过点A作AP⊥AB交BC于P,连接PG,
∵AG⊥AD,∴∠DAF=∠EAC=90°,
在△DAF和△GAE中,
,
∴△DAF≌△GAE,
∴AD=AG,
∴∠BAP=90°=∠DAG,
∴∠BAD=∠PAG,
∵∠B=∠APB=45°,
∴AB=AP,
在△ABD和△APG中,
,
∴△ABD≌△APG,
∴BD=PG,∠B=∠APG=45°,
∴∠GPB=∠GPC=90°,
∵∠C=30°,
∴PG= GC,
∴BD= CG.
(3)
解:如图2中,
作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,
在RT△AHC中,∵∠ACH=30°,
∴AC=2AH,
∴AH=AP,
在RT△AHD和RT△APG中,
,
∴△AHD≌△APG,
∴∠DAH=∠GAP,
∵GM⊥AC,PA=PC,
∴MA=MC,
∴∠MAC=∠MCA=∠MAH=30°,
∴∠DAM=∠GAM=45°,
∴∠DAH=∠GAP=15°,
∴∠BAD=∠BAH﹣∠DAH=30°,
作DK⊥AB于K,设BK=DK=a,则AK= a,AD=2a,
∴ = = ,
∵AG=CG=AD,
∴ =
【解析】(1)如图1中,过点A作AH⊥BC于H,分别在RT△ABH,RT△AHC中求出BH、HC即可.(2)如图1中,过点A作AP⊥AB交BC于P,连接PG,由△ABD≌△APG推出BD=PG,再利用30度角性质即可解决问题.(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,作DK⊥AB于K,设BK=DK=a,则AK= a,AD=2a,只要证明∠BAD=30°即可解决问题.本题考查相似三角形综合题、全等三角形的判定和性质、直角三角形30度角性质、线段垂直平分线性质等知识,解题的关键是添加辅助线构造全等三角形,学会设参数解决问题,属于中考压轴题.
科目:初中数学 来源: 题型:
【题目】某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.例如,第一个月用水16吨,需交水费17.8元,第二个月用水20吨,需交水费23元.
(1)求每吨水的基础价和调节价
(2)设每月用水量为n吨,应交水费为m元,写出m与n之间的函数解析式;
(3)若某月用水12吨,应交水费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 4 |
第2组 | 30≤x<35 | 6 |
第3组 | 35≤x<40 | 14 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)= .例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)= .
(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.
【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?
【分析问题】我们可用框图表示这种运算过程(如图a).
也可用图象描述:如图1,在x轴上表示出x1 , 先在直线y=kx+b上确定点(x1 , y1),再在直线y=x上确定纵坐标为y1的点(x2 , y1),然后再x轴上确定对应的数x2 , …,以此类推.
【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x,怎样变化.
(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;
(2)若k>1,又得到什么结论?请说明理由;
(3)①若k=﹣ ,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2 , x3 , x4 , 并写出研究结论;
②若输入实数x1时,运算结果xn互不相等,且越来越接近常数m,直接写出k的取值范围及m的值(用含k,b的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E为正方形ABCD中CD边上一点,∠DAE=30°,P为AE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com