精英家教网 > 初中数学 > 题目详情

【题目】解答题
(1)如图1,AD、BC相交于点O,OA=OC,∠OBD=∠ODB.求证:AB=CD.
(2)如图2,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若OD= ,求∠BAC的度数.

【答案】
(1)证明:∵∠OBD=∠ODB,

∴OB=OD,

在△AOB与△COD中,

∴△AOB≌△COD(SAS),

∴AB=CD


(2)解:连接OC,如图所示:

∵CD与⊙O相切,

∴OC⊥CD,

∵OA=OC,OA=1,

∴OC=1,

∴CD= = =1,

∴CD=OC,

∴△OCD为等腰直角三角形,

∴∠COB=45°,

∴∠BAC= ∠COB=22.5°.


【解析】(1)由∠OBD=∠ODB,得出OB=OD,再由SAS证得△AOB≌△COD,即可得出结论;(2)连接OC,由CD与⊙O相切,得出OC⊥CD,求出CD=1,得出△OCD为等腰直角三角形,推出∠COD=45°,即可得出结果.
【考点精析】认真审题,首先需要了解切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,ABCD,∠1=2,∠3=4

1)求证:ADBE

2)若∠B=3=22,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1, ),则点B的坐标为(
A.(1﹣ +1)
B.(﹣ +1)??
C.(﹣1, +1)
D.(﹣1,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的ABC,若小方格边长为1,格点ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识.

(1)在如图所示的网格平面内作出平面直角坐标系;

(2)作出ABC关于y轴对称的三角形A1B1C1

(3)判断ABC的形状,并求出ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算:(a﹣b)2﹣a(a﹣2b);
(2)解方程: =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是(
A.60°
B.120°
C.60°或120°
D.30°或150°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠A=36°,BD∠B的平分线,交AC于点D,EAB中点,EDBC的延长线于点F.求证:AB=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查,在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如图所示.
(1)本次调查人数共人 , 使用过共享单车的有人
(2)请将条形统计图补充完整;
(3)如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射线OA、OB、OC、OD、OE有公共端点O.

(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;

(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;

(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.

查看答案和解析>>

同步练习册答案