【题目】为了庆祝“六一儿童节”,六年级同学在班会课进行了趣味活动.小舟同学在模板上画出一个菱形ABCD,将它以点O为中心按顺时针方向分别旋转90°,180°,270°后得到如图所示的图形,其中∠ABC=120°,AB=2cm,然后小舟将此图形制作成一个靶子,那么当我们投飞镖时命中阴影部分的概率为( )
A. B. 2﹣C. -1D.
【答案】B
【解析】
连接BD、AC,OA、OC.先求得菱形ABCD的面积和△ACO的面积,然后可求得四边形ABCO和凹四边形ADCO的面积,最后依据它们的面积比进行求解即可.
解:如图:连接BD、AC,OA、OC.
∵ABCD为菱形,∠ABC=120°,AB=10cm,
∴∠BAD=60°,
∴△ABD为等边三角形.
∴BD=AB=2cm.
∴AE=ABsin60°=2×=.
∴菱形ABCD的面积=BDAE=2.
由旋转的性质可知OC=OA.
又∵∠COA=90°,
∴OC=AC=×2=.
∴△AOC的面积=OCOA=3.
∴阴影AOCD的面积=3﹣,四边形ABCO的面积=3+.
∴命中阴影部分的概率=,
故选:B.
科目:初中数学 来源: 题型:
【题目】(题文)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:
(1)本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;
(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;
(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,∠AOB=70°,以点O为圆心,以适当长为半径作弧分别交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上取点M,连接MC、MD.若测得∠CMD=40°,则∠MDB=_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量山坡上旗杆CD的高度,小明在点A处利用测角仪测得旗杆顶端D的仰角为37°,然后他沿着正对旗杆CD的方向前进17m到达B点处,此时测得旗杆顶部D和底端C的仰角分别为58°和30°,求旗杆CD的高度(结果精确到0.1m).
(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组.请结合题意填空,完成本题的解答
(Ⅰ)解不等式①,得__________;
(Ⅱ)解不等式②,得__________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD的中点,点A关于BE的对称点为G(G在矩形ABCD内部),连接BG并延长交CD于F.
(1)如图1,当AB=AD时,
①根据题意将图1补全;
②直接写出DF和GF之间的数量关系.
(2)如图2,当AB≠AD时,如果点F恰好为DC的中点,求的值.
(3)如图3,当AB≠AD时,如果DC=nDF,写出求的值的思路(不必写出计算结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2﹣(2k﹣1)x+k2+1=0有两个不相等的实数根x1,x2.
(1)求实数k的取值范围;
(2)若方程的两实数根x1,x2满足|x1|+|x2|=x1x2,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,△ABC和△CDE都是等腰直角三角形,∠ACB=∠DCE=90°,且点A在ED的延长线上,以DE为直径的⊙O与AB交于G、H两点,连接BE.
(1)求证:BE是⊙O的切线;
(2)如图②,连接OB、OC,若tan∠CAD=,试判断四边形BECO的形状,请说明理由;
(3)在(2)的条件下,若BF=,请你求出HG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线交⊙A于点F,连接AF,BF,DF.
(1)求证:△ABC≌△ABF;
(2)填空:
①当∠CAB= °时,四边形ADFE为菱形;
②在①的条件下,BC= cm时,四边形ADFE的面积是6cm2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com