| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 2$\sqrt{2}$ |
分析 作出图形,过点A作AD⊥BC于D,根据等腰三角形三线合一的性质可得BC=2BD,根据直角三角形30°角所对的直角边等于斜边的一半可得AD=$\frac{1}{2}$AB,再利用勾股定理列式求出BD,然后根据三角形的面积公式列式计算即可得解.
解答
解:如图,过点A作AD⊥BC于D,
∵△ABC是等腰三角形,
∴BC=2BD,
∵底角∠B=30°,
∴AD=$\frac{1}{2}$AB=$\frac{1}{2}$×2=1,
由勾股定理得,BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴BC=2$\sqrt{3}$,
∴三角形的面积=$\frac{1}{2}$×2$\sqrt{3}$×1=$\sqrt{3}$.
故选A.
点评 本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质是解题的关键,作出图形更形象直观.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | $\frac{26}{9}$ | D. | $\frac{25}{9}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com