【题目】如图,在坐标系中,抛物线经过点和,与轴交于点.直线.
抛物线的解析式为 .直线的解析式为 ;
若直线与抛物线只有一个公共点,求直线的解析式;
设抛物线的顶点关于轴的对称点为,点是抛物线对称轴上一动点,如果直线与抛物线在轴上方的部分形成了封闭图形(记为图形).请结合函数的图象,直接写出点的纵坐标的取值范围.
【答案】(1);(2);(3).
【解析】
(1)将两点坐标直接代入可求出b,c的值,进而求出抛物线解析式为,得出C的坐标,从而求出直线AC的解析式为y=x+3.
(2)设直线的解析式为,直线与抛物线只有一个公共点,方程有两个相等的实数根,再利用根的判别式即可求出b的值.
(3)抛物线的顶点坐标为(-1,4),关于y轴的对称点为M(1,4),可确定M在直线AC上,分直线不在直线下方和直线在直线下方两种情况分析即可得解.
解:将A,B坐标代入解析式得出b=-2,c=3,
∴抛物线的解析式为:
当x=0 时,y=3,C的坐标为(0,3),
根据A,C坐标可求出直线AC的解析式为y=x+3.
直线,
设直线的解析式为.
直线与抛物线只有一个公共点,
方程有两个相等的实数根,
,
解得.
直线的解析式为.
.
解析:如图所示,,
抛物线的顶点坐标为.
抛物线的顶点关于轴的对称点为.
当时,,
点在直线上.
①当直线不在直线下方时,直线能与抛物线在第二象限的部分形成封闭图形.
当时,.
当直线与直线重合,即动点落在直线上时,点的坐标为.
随着点沿抛物线对称轴向上运动,图形逐渐变小,直至直线与轴平行时,图形消失,此时点与抛物线的顶点重合,动点的坐标是,
②当直线在直线下方时,直线不能与抛物线的任何部分形成封闭图形.
综上,点的纵坐标的取值范围是.
科目:初中数学 来源: 题型:
【题目】定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).
(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;
(2)求除点(2,0)外△ABC所有自相似点的坐标;
(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某兴趣小组想借助如图所示的直角墙角(两边足够长),用长的篱笆围成一个矩形花园(篱笆只围、两边).
(1)若围成的花园面积为,求花园的边长;
(2)在点处有一颗树与墙,的距离分别为和,要能将这棵树围在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时花园的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是中边的中点,于,以为直径的经过,连接,有下列结论:①;②;③;④是的切线.其中正确的结论是( )
A.①②B.①②③C.②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的图像如图所示,下面结论:①;②;③函数的最小值为;④当时,;⑤当时,(、分别是、对应的函数值).正确的个数为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平行四边形中,,,.平行四边形的顶点在线段上(点在的左边),顶点分别在线段和上.
(1)求证:;
(2)如图1,将沿直线折叠得到,当恰好经过点时,求证:四边形是菱形;
(3)如图2,若四边形是矩形,且,求的长.(结果中的分母可保留根式)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.
(1)求证:CE是⊙O的切线.
(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.
①试探究线段CF与CD之间满足的数量关系;
②若CD=4,BD=2,求线段FG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com