【题目】如图,抛物线y=﹣
+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.
(1)求抛物线解析式;
(2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;
(3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.
![]()
【答案】(1) 抛物线解析式为y=﹣
;(2) DF=3
;(3) 点E的坐标为E1(4,1)或E2(﹣
,﹣
)或E3(
,﹣
)或E4(
,﹣
).
【解析】
(1)将点A、C坐标代入抛物线解析式求解可得;
(2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;
(3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.
(1)∵抛物线y=﹣
+bx+c交x轴于点A(﹣2,0)、C(0,3),∴
,解得:
,∴抛物线解析式为y=﹣
+
x+3;
(2)如图1.
∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.
又∵DC=DE,∴△COD≌△DHE,∴DH=OC.
又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3
;
![]()
(3)如图2,设点D的坐标为(t,0).
∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:
①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣
+
x+3,得:﹣
(t+3)2+
(t+3)+3=t,解得:t=1或t=﹣
,所以点E的坐标E1(4,1)或E2(﹣
,﹣
);
②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣
+
x+3得:﹣
(t﹣3)2+
(t﹣3)+3=﹣t,解得:t=
或t=
.故点E的坐标E3(
,﹣
)或E4(
,﹣
);
综上所述:点E的坐标为E1(4,1)或E2(﹣
,﹣
)或E3(
,﹣
)或E4(
,﹣
)./span>
科目:初中数学 来源: 题型:
【题目】如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
(1)求抛物线C1的表达式;
(2)直接用含t的代数式表示线段MN的长;
(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;
(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,对于任意两点
,
,若点
满足
,
那么称点
是点
,
的融合点,例如:
,
,当点
满足
,
时,则点
是点
,
的融合点.
(1)已知点
,
,
,请说明其中一个点是另外两个点的融合点.
(2)如图,点
,点
是直线
上任意一点,点
是点
,
的融合点.
![]()
①试确定
与
的关系式;
②在给定的坐标系
中,画出①中的函数图象;
③若直线
交
轴于点
.当
为直角三角形时,直接写出点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线L1:y=﹣x2+bx+c经过点A(1,0)和点B(5,0)已知直线l的解析式为y=kx﹣5.
(1)求抛物线L1的解析式、对称轴和顶点坐标.
(2)若直线l将线段AB分成1:3两部分,求k的值;
(3)当k=2时,直线与抛物线交于M、N两点,点P是抛物线位于直线上方的一点,当△PMN面积最大时,求P点坐标,并求面积的最大值.
(4)将抛物线L1在x轴上方的部分沿x轴折叠到x轴下方,将这部分图象与原抛物线剩余的部分组成的新图象记为L2
①直接写出y随x的增大而增大时x的取值范围;
②直接写出直线l与图象L2有四个交点时k的取值范围.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点
为二次函数
图象的顶点,直线
分别交
轴正半轴,
轴于点
,
.
![]()
(1)判断顶点
是否在直线
上,并说明理由.
(2)如图1,若二次函数图象也经过点
,
,且
,根据图象,写出
的取值范围.
(3)如图2,点
坐标为
,点
在
内,若点
,
都在二次函数图象上,试比较
与
的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).
![]()
(1)直接写出这两个二次函数的表达式;
(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;
(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.
(1)观察猜想:
图1中,PM与PN的数量关系是 ,位置关系是 .
(2)探究证明:
将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;
(3)拓展延伸:
把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
,
分别是双曲线
在第一、三象限上的点,
轴,
轴,垂足分别为
,
,点
是
与
轴的交点.设
的面积为
,
的面积为
,
的面积为
,则有( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com