·ÖÎö £¨1£©²Ã·¨1µÄÕý·½Ðεı߳¤Îªx£¬ÓÉEF¡ÎBC£¬ÓÚÊǵõ½¡÷AEF¡×¡÷ABC£¬ËùÒÔ$\frac{EF}{BC}$=$\frac{AF}{AC}$¼´¿ÉµÃµ½x=$\frac{24}{7}$£»
£¨2£©¸ù¾Ý¹´¹É¶¨ÀíµÃµ½c=10£¬Éèб±ßÉϵĸßΪh£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½µÄab=ch£¬Çó³öh=4.8µÃµ½±ÈÀýʽ$\frac{y}{10}=\frac{4.8-y}{4.8}$£¬¼´¿ÉµÃµ½y=$\frac{120}{37}$£»
£¨3£©ÓÉ£¨1£©Öª£¬$\frac{x}{a}=\frac{b-x}{b}$£¬µÃµ½x=$\frac{ab}{a+b}$£¬ÓÉ£¨2£©Öª$\frac{y}{c}=\frac{\frac{ab}{c}-y}{\frac{ab}{c}}$£¬µÃµ½y=$\frac{ab}{c+\frac{ab}{c}}$£¬ÓÚÊǵõ½$\frac{1}{y}$-$\frac{1}{x}$=$\frac{{c}^{2}+ab-£¨a+b£©c}{abc}=\frac{£¨c-a£©£¨c-b£©}{abc}$£¬ÓÉÓÚc£¾a£¬c£¾b£¬ÓÚÊǵõ½£¨c-a£©£¨c-b£©£¾0£¬Çó³ö$\frac{1}{y}-\frac{1}{x}$£¾0£¬µÃµ½x£¾y£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð ½â£º£¨1£©²Ã·¨1µÄÕý·½Ðεı߳¤Îªx£¬
¡ßEF¡ÎBC£¬
¡à¡÷AEF¡×¡÷ABC£¬
¡à$\frac{EF}{BC}$=$\frac{AF}{AC}$£¬
¡à$\frac{x}{6}=\frac{8-x}{8}$£¬
¡àx=$\frac{24}{7}$£»
£¨2£©¡ßa=6£¬b=8£¬
¡àc=10£¬
Éèб±ßÉϵĸßΪh£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½µÄab=ch£¬
¡àh=4.8£¬
¡ß²Ã·¨2µÄÕý·½Ðεı߳¤y£¬Ôò$\frac{y}{10}=\frac{4.8-y}{4.8}$£¬
½âµÃ£ºy=$\frac{120}{37}$£¬
£¨3£©S1£¾S2£¬ÀíÓÉ£º
ÓÉ£¨1£©Öª£¬$\frac{x}{a}=\frac{b-x}{b}$£¬µÃbx=ab-ax£¬
¡àx=$\frac{ab}{a+b}$£¬
ÓÉ£¨2£©Öª$\frac{y}{c}=\frac{\frac{ab}{c}-y}{\frac{ab}{c}}$£¬µÃy=$\frac{abc}{{c}^{2}+ab}$£¬
¼´y=$\frac{ab}{c+\frac{ab}{c}}$£¬
¡à$\frac{1}{y}$-$\frac{1}{x}$=$\frac{c+\frac{ab}{c}}{ab}-\frac{a+b}{ab}$=$\frac{c+\frac{ab}{c}-£¨a+b£©}{ab}$=$\frac{{c}^{2}+ab-£¨a+b£©c}{abc}=\frac{£¨c-a£©£¨c-b£©}{abc}$£¬
¡ßc£¾a£¬c£¾b£¬
¡à£¨c-a£©£¨c-b£©£¾0£¬
¡à$\frac{1}{y}-\frac{1}{x}$£¾0£¬
¡à$\frac{1}{y}£¾\frac{1}{x}$£¬
¡àx£¾y£¬¼´²Ã·¨1µÃµ½µÄÕý·½Ðα߳¤£¾²Ã·¨2µÃµ½µÄÕý·½Ðα߳¤£¬
¡àS1£¾S2£®
µãÆÀ ±¾Ì⿼²éÁËÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬Õý·½ÐεÄÐÔÖÊ£¬Èý½ÇÐεÄÃæ»ý¹«Ê½£¬¹´¹É¶¨Àí£¬ÊìÁ·ÕÆÎÕ¸÷ÐÔÖʶ¨ÀíÊǽâÌâµÄ¹Ø¼ü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 5 | B£® | -5 | C£® | -4 | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a=3£¬b=2 | B£® | a=2£¬b=3 | C£® | a=1£¬b=-1 | D£® | a=-1£¬b=1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 17cm | B£® | 16cm | C£® | 4cm | D£® | 5cm |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Èñ½ÇºÍ¶Û½ÇÒ»¶¨»¥²¹ | B£® | Ò»¸ö½ÇµÄ²¹½ÇÒ»¶¨´óÓÚÕâ¸ö½Ç | ||
| C£® | Á½µã¿ÉÒÔÈ·¶¨ÎÞÊýÌõÖ±Ïß | D£® | ¶Û½ÇµÄ²¹½ÇÒ»¶¨ÊÇÈñ½Ç |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 8% | B£® | 18% | C£® | 20% | D£® | 25% |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com