【题目】如图,在△ABC中,AE为边BC上的高,点D为边BC上的一点,连接AD.
(1)当AD为边BC上的中线时.若AE=4,△ABC的面积为24,求CD的长;
(2)当AD为∠BAC的角平分线时.
①若∠C =65°,∠B =35°,求∠DAE的度数;
②若∠C-∠B =20°,则∠DAE = °.
【答案】(1)6 ;(2)①15°;②10.
【解析】
(1)利用三角形的面积公式求出BC即可解决问题;
(2)①根据三角形内角和求出∠BAC和∠CAE的度数,然后根据角平分线的定义求得∠CAD的度数,从而求解;
②设∠C=x°,则∠B=(x+20)°,然后根据三角形内角和用含x的式子表示出∠BAC和∠CAE的度数,然后根据角平分线的定义求得∠CAD的度数,从而求解.
解:(1)由题意可知:AE⊥BC,AE=4,△ABC的面积为24,
∴×BC×AE=24,
∴×BC×4=24,
∴BC=12,
∵AD是△ABC的中线,
∴CD=BC=6,
(2)①在△ABC中,∠BAC=180°-∠C-∠B =80°,
在△AEC中,∵AE⊥BC
∴∠CAE=180°-90°-∠C=25°
∵AD为∠BAC的角平分线
∴∠CAD=
∴∠DAE的度数为∠CAD -∠CAE =15°
②设∠C=x°,则∠B=(x+20)°
在△ABC中,∠BAC=180°-∠C-∠B =(160-2x)°,
在△AEC中,∵AE⊥BC
∴∠CAE=180°-90°-∠C=(90-x)°
∵AD为∠BAC的角平分线
∴∠CAD=
∴∠DAE的度数为∠CAE- ∠CAD =10°
故答案为:10.
科目:初中数学 来源: 题型:
【题目】某校组织八年级师生共420人参观纪念馆,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A种车3辆,B种车5辆,则空余15个座位:如果租用A种车5辆,B种车3辆,则有15个人没座位
(1)求该公司A,B两种车型各有多少个座位?
(2)若A种车型的日租金为260元辆,B种车型的日租金为350元辆,怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?(请直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.
例如:求91与56的最大公约数
解:
请用以上方法解决下列问题:
(1)求108与45的最大公约数;
(2)求三个数78、104、143的最大公约数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤S△EPM= S梯形ABCD , 正确的个数有( )
A.5个
B.4个
C.3个
D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请先阅读下列文字与例题,再回答后面的问题:
当因式分解中,无法直接运用提取公因式和乘法公式时,我们往往可以尝试一个多项式分组后,再运用提取公因式或乘法公式继续分解的方法是分组分解法.
例如:
(1)
=
=
=
(2)
=
=
=
(1)根据上面的知识,我们可以将下列多项式进行因式分解:
(_____________)-(____________)=(_____________)-(____________)= (_____________)(_____________);
=(_____________)+(____________)=(_____________)+(____________)= (_____________)(______________).
(2)分解下列因式:
①;
②.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图一:
A | B | C | |
笔试 | 85 | 95 | 90 |
口试 | 80 | 85 |
(1)请将表一和图一中的空缺部分补充完整.
(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为( )
A.20海里
B.10 海里
C.20 海里
D.30海里
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某批发市场对外批发某品脾的玩具,其价格与件数关系如图所示,请你根据图中描述判断:下列说法中错误的是( )
A. 当件数不超过30件时,每件价格为60元
B. 当件数在30到60之间时,每件价格随件数增加而减少
C. 当件数为50件时,每件价格为55元
D. 当件数不少于60件时,每件价格都是45元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解,补全证明过程及推理依据.
已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.
求证∠A=∠F
证明:∵∠1=∠2(已知)
∠2=∠DGF( )
∴∠1=∠DGF(等量代换)
∴ ∥ ( )
∴∠3+∠ =180°( )
又∵∠3=∠4(已知)
∴∠4+∠C=180°(等量代换)
∴ ∥ ( )
∴∠A=∠F( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com