【题目】某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.
(1)求一台A型无人机和一台B型无人机的售价各是多少元?
(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.
①求y与x的关系式;
②购进A型、B型无人机各多少台,才能使总费用最少?
【答案】(1)一台A型无人机售价800元,一台B型无人机的售价1000元;
(2)①y=﹣200x+50000;②购进A型、B型无人机各16台、34台时,才能使总费用最少.
【解析】
(1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;
(2)①根据题意可以得到y与x的函数关系式;
②根据①中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少.
解:(1)设一台型无人机售价元,一台型无人机的售价元,
,
解得,,
答:一台型无人机售价元,一台型无人机的售价元;
(2)①由题意可得,
即y与x的函数关系式为;
②∵B型无人机的数量不少于A型无人机的数量的2倍,
,
解得,,
,
∴当时,y取得最小值,此时,
答:购进型、型无人机各台、台时,才能使总费用最少.
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元.
(1)该商场第一批购进衬衫多少件?
(2)商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0)其部分图象如图所示,下列结论:①b2﹣4ac<0;②方程ax2+bx+c的两个根是x1=﹣1,x2=3; ③2a+b=0,④当y>0时,x的取值范围是﹣1<x<3:⑤当x>0,y随x增大而减小,其中结论正确的序号是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四位同学在研究函数y=ax2+bx+c(a、b、c为常数,且a≠0)时,甲发现当x=1时,函数有最大值;乙发现﹣1是方程ax2+bx+c=0的一个根;丙发现函数的最大值为﹣1;丁发现当x=2时,y=﹣2,已知四位中只有一位发现的结论时错误的,则该同学是( ).
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点P坐标为(1,),以OP为斜边作等腰直角△OAP,直角顶点A在反比例函数y=的图象上,则k的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据: ≈1.4, ≈1.7).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在ABCD中,AE⊥BC于E,E恰为BC的中点.tanB=2.
(1)求证:AD=AE;
(2)如图2.点P在BE上,作EF⊥DP于点F,连结AF.线段DF、EF与AF之间有怎样的数量关系?并说明理由;
(3)请你在图3中画图探究:当P为射线EC,上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?请在图3中补全图形,直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知ABCD,点E是BC边上的一点,将边AD延长至点F,使∠AFC=∠DEC.
(1)求证:四边形DECF是平行四边形;
(2)若AB=13,DF=14,tan A=,求CF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com