精英家教网 > 初中数学 > 题目详情

【题目】如图,点FABCD的边AD上的三等分点,BFAC于点E,如果AEF的面积为2,那么四边形CDFE的面积等于( )

A. 18 B. 22 C. 24 D. 46

【答案】B

【解析】

连接FC,先证明△AEF∽△BEC,得出AEEC=13,所以SEFC=3SAEF,在根据点FABCD的边AD上的三等分点得出S△FCD=2S△AFC四边形CDFE的面积=S△FCD+ S△EFC,再代入AEF的面积为2即可求出四边形CDFE的面积.

ADBC,

∴∠EAF=ACB,AFE=FBC;

∵∠AEF=BEC,

∴△AEF∽△BEC,

==

∵△AEF与△EFC高相等,

SEFC=3SAEF

∵点FABCD的边AD上的三等分点

S△FCD=2S△AFC

AEF的面积为2

∴四边形CDFE的面积=S△FCD+ S△EFC=16+6=22.

故答案选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将如图所示的牌面数字分别是1234的四张扑克牌背面朝上,洗匀后放在桌面上.

1)从中随机抽出一张牌,牌面数字是偶数的概率是

2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是

3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如3+2=(1+2.善于思考的小明进行了以下探索:

若设a+b=(m+n2m2+2n2+2mn(其中abmn均为整数),

则有am2+2n2b2mn

这样小明就找到了一种把类似a+b的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

1)若a+b=(m+n2,当abmn均为整数时,用含mn的式子分别表示ab,得:a   b   

2)若a+6=(m+n2,且amn均为正整数,求a的值;

3)化简:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三个顶点的坐标分别为

1)请画出关于轴成轴对称的图形,并写出的坐标;

2)求的面积;

3〉在轴上找一点,使的值最小,请画出点的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形一腰上的中线将这个等腰三角形的周长分为915两部分,则这个等腰三角形的腰长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2)

(1)求这两个函数解析式;

(2)在y轴上求作一点P,使PA+PB的值最小,并直接写出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣)两点,与x轴交于另一点B.

(1)求经过A,B,C三点的抛物线的解析式;

(2)过点CCE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标

(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学举行中国梦校园好声音歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.

1)根据图示填写下表;

平均数(分)

中位数(分)

众数(分)

初中部

85

高中部

85

100

2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;

3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班将举行“数学知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:

请根据上面的信息,解决问题:

(1)试计算两种笔记本各买了多少本?

(2)请你解释:小明为什么不可能找回68元?

查看答案和解析>>

同步练习册答案