【题目】如图1,抛物线与x轴相交于点A、点B,与y轴交于点C(0,3),对称轴为直线x=1,交x轴于点D,顶点为点E.
(1)求该抛物线的解析式;
(2)连接AC,CE,AE,求△ACE的面积;
(3)如图2,点F在y轴上,且OF=,点N是抛物线在第一象限内一动点,且在抛物线对称轴右侧,连接ON交对称轴于点G,连接GF,若GF平分∠OGE,求点N的坐标.
【答案】(1)y=-x2+2x+3;(2)1;(3)点N的坐标为:(,).
【解析】
(1)由点C的坐标,求出c,再由对称轴为x=1,求出b,即可得出结论;
(2)先求出点A,E坐标,进而求出直线AE与y轴的交点坐标,最后用三角形面积公式计算即可得出结论;
(3)先利用角平分线定理求出FQ=1,进而利用勾股定理求出OQ=1=FQ,进而求出∠BON=45°,求出直线ON的解析式,最后联立抛物线解析式求解,即可得出结论.
解:(1)∵抛物线y=-x2+bx+c与y轴交于点C(0,3),
令x=0,则c=3,
∵对称轴为直线x=1,
∴,
∴b=2,
∴抛物线的解析式为y=-x2+2x+3;
(2)如图1, AE与y轴的交点记作H,
由(1)知,抛物线的解析式为y=-x2+2x+3,
令y=0,则-x2+2x+3=0,
∴x=-1或x=3,
∴A(-1,0),
当x=1时,y=-1+2+3=4,
∴E(1,4),
∴直线AE的解析式为y=2x+2,
∴H(0,2),
∴CH=3-2=1,
∴S△ACE=CH|xE-xA|=×1×2=1;
(3)如图2, 过点F作FP⊥DE于P,则FP=1,过点F作FQ⊥ON于Q,
∵GF平分∠OGE,
∴FQ=FP=1,
在Rt△FQO中,OF=,
根据勾股定理得,OQ=,
∴OQ=FQ,
∴∠FOQ=45°,
∴∠BON=90°-45°=45°,
过点Q作QM⊥OB于M,OM=QM
∴ON的解析式为y=x①,
∵点N在抛物线y=-x2+2x+3②上,
联立①②,则,
解得:或(由于点N在对称轴x=1右侧,所以舍去),
∴点N的坐标为:(,).
科目:初中数学 来源: 题型:
【题目】发现来源于探究.小亮进行数学探究活动,作边长为a的正方形ABCD和边长为b的正方形AEFG(a>b),开始时,点E在AB上,如图1.将正方形AEFG绕点A逆时针方向旋转.
(1)如图2,小亮将正方形AEFG绕点A逆时针方向旋转,连接BE、DG,当点G恰好落在线段BE上时,小亮发现DG⊥BE,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG的长.
(2)如图3,小亮旋转正方形AEFG,点E在DA的延长线上,连接BF、DF.当FG平分∠BFD时,请你帮他求a:b及∠FBG的度数.
(3)如图4,BE的延长线与直线DG相交于点P,a=2b.当正方形AEFG绕点A从图1开始,逆时针方向旋转一周时,请你帮小亮求点P运动的路线长(用含b的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.
(1)求证:△ADC≌△BEC;
(2)如果EC⊥BE,证明:AD∥EC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线、是紧靠某湖泊的两条相互垂直的公路,曲线段是该湖泊环湖观光大道的一部分.现准备修建一条直线型公路,用以连接两条公路和环湖观光大道,且直线与曲线段有且仅有一个公共点.已知点到、的距离分别为和,点到的距离为,点到的距离为.若分别以、为轴、轴建立平面直角坐标系,则曲线段对应的函数解析式为.
(1)求的值,并指出函数的自变量的取值范围;
(2)求直线的解析式,并求出公路的长度(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某个周末小月和小华在南滨路跑步锻炼身体,两人同时从A点出发,沿直线跑到B点后马上掉头原路返回A点算一个来回,回到A点后又马上调头去往B点,以此类推,每人要完成2个来回。一直两人全程均保持匀速,掉头时间忽略不计。如图所示是小华从出发到他率先完成第一个来回为止,两人到B点的距离之和y(米)与小华跑步时间x(分钟)之间的函数图像,则当小华跑完2个来回时,小月离B点的距离为___米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小华和妈妈到大足北山游玩,身高1.5米的小华站在坡度为的山坡上的点观看风景,恰好看到对面的多宝塔,测得眼睛看到塔顶的仰角为,接着小华又向下走了米,刚好到达坡底,这时看到塔顶的仰角为,则多宝塔的高度约为( ).(精确到0.1米,参考数据:)
A.51.0米B.52.5米C.27.3米D.28.8米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小林在学习完一次函数与反比例函数的图象与性质后,对函数图象与性质研究饶有兴趣,便想着将一次函数与反比例函数的解析式进行组合研究.他选取特殊的一次函数与反比例函数,相加后,得到一个新的函数.已知,这个新函数满足:当时,;当时,.
(1)求出小林研究的这个组合函数的解析式;
(2)小林依照列表、描点、连线的方法在给定的平面直角坐标系内画出了该函数图象的一部分,请你在图中补全小林未画完的部分,并根据图象,写出该函数图象的一条性质;
(3)请根据你所画的函数图象,利用所学函数知识,直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.
(1)求证:BC是⊙O的切线;
(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;
(3)若BE=8,sinB=,求DG的长,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,以下结论:①abc>0;②3a+c>0;③m为任意实数,则有a(m2+1)+bm≥0;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2,正确的有( )个.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com