精英家教网 > 初中数学 > 题目详情

【题目】已知线段AD=10 cm,B、C都是线段AD上的点,AC=7 cm,BD=4 cm,E、F分别是AB、CD的中点,求线段EF的长.

【答案】 cm

【解析】

先结合已知条件画出图形,根据BC=AC+BD-AD求出BC的长,再根据AB=AC-BC,AB=AC-BC求出ABCD的长,根据E、F分别是线段AB、CD的中点求出BECF,即可得EF的长.

∵AD=10cm,AC=7cm,BD=4cm,
∴BC=AC+BD-AD
=7cm+4cm-10cm=1cm,
∴AB=AC-BC=7cm-1cm=6cm,CD=BD-BC =4cm-1cm=3cm,
∵E、F分别是线段AB、CD的中点,
∴BE=AB=3cm,CF=CD=cm,
∴EF=EB+BC+CF=3+1+(cm).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是(

A.abc<0
B.2a+b<0
C.a﹣b+c<0
D.4ac﹣b2<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知E是平行四边形ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.

(1)求证:△ABE≌△FCE;
(2)连接AC、BF,若AE= BC,求证:四边形ABFC为矩形;
(3)在(2)条件下,直接写出当△ABC再满足时,四边形ABFC为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算与解方程.
(1)计算: ﹣(2﹣ 0+( 2
(2)解分式方程: + =4.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.

(1)分别求直线l1与x轴,直线l2与AB的交点坐标;
(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;
(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.

(1)求线段MN的长;

(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为(

A.2
B.
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.

(1)求圆的半径及圆心P的坐标;
(2)M为劣弧 的中点,求证:AM是∠OAB的平分线;
(3)连接BM并延长交y轴于点N,求N,M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:

(1)本次接受问卷调查的学生总人数是
(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为 , m的值为
(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.

查看答案和解析>>

同步练习册答案