【题目】图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,点A、B、M、N均落在格点上,在图①、图②给定的网格中按要求作图.
(1)在图①中的格线MN上确定一点P,使PA与PB的长度之和最小
(2)在图②中的格线MN上确定一点Q,使∠AQM=∠BQM.
要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的对称轴是x=,小亮通过观察得出了下面四个结论:①c<0,②a﹣b+c>0,③2a﹣3b=0,④5b﹣2c<0.其中正确的有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连结BD并延长至点C,使得CD=BD,连结AC交⊙O于点F,连接BE,DE,DF.
(1)若∠E=35°,求∠BDF的度数.
(2)若DF=4,cos∠CFD=,E是的中点,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,若y1>y2≥n,则m的取值范围是( )
A.﹣3<m<2B.﹣<m<-C.m>﹣D.m>2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(问题发现)如图1,在Rt△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,请判断线段BE与AF的数量关系并写出推断过程;
(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)(结论运用)在(1)(2)的条件下,若△ABC的面积为2,当正方形CDEF旋转到B,E,F三点在同一直线上时,请直接写出线段AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如阁,在△ABC中,∠ACB=90°,AC=3,BC=4,点P从点A出发,沿折线AC﹣BC以每秒1个单位长度的速度向终点B运动,当点P不与点A、B重合时,在边AB上取一点Q,满足∠PQA=2∠B,过点Q作QM⊥PQ,交边BC于点M,以PQ、QM为边作矩形PQMN,设点P的运动时间为t秒
(1)用含t的代数式表示线段PQ的长;
(2)当矩形PQMN为正方形时,求t的值;
(3)设矩形PQMN与△ABC重叠部分图形的周长为l,求l与t之间的函数关系式;
(4)作点A关于直线PQ的对称点A′,作点C关于直线PN的对称点C′,当点A′、C′这两个点中只有一个点在矩形PQMN内部时,直接写出此时的t取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是( )
A. 1B. ﹣1C. 1或﹣1D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:
分 数 段 | 频数 | 频率 |
60≤x<70 | 9 | a |
70≤x<80 | 36 | 0.4 |
80≤x<90 | 27 | b |
90≤x≤100 | c | 0.2 |
请根据上述统计图表,解答下列问题:
(1)在表中,a= ,b= ,c= ;
(2)补全频数直方图;
(3)根据以上选取的数据,计算七年级学生的平均成绩.
(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com