【题目】如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连结BD并延长至点C,使得CD=BD,连结AC交⊙O于点F,连接BE,DE,DF.
(1)若∠E=35°,求∠BDF的度数.
(2)若DF=4,cos∠CFD=,E是的中点,求DE的长.
【答案】(1)∠BDF=110°;(2)DE=2+.
【解析】
(1)连接EF,BF,由AB是⊙O的直径,得到∠AFB=∠BFC=90°,推出,得到∠DEF=∠BED=35°,根据圆内接四边形的性质即可得到结论;
(2)连接AD,OE,过B作BG⊥DE于G,解直角三角形得到AB=6,由E是的中点,AB是⊙O的直径,得到∠AOE=90°,根据勾股定理即可得到结论.
(1)如图1,连接EF,BF,
∵AB是⊙O的直径,
∴∠AFB=∠BFC=90°,
∵CD=BD,
∴DF=BD=CD,
∴,
∴∠DEF=∠BED=35°,
∴∠BEF=70°,
∴∠BDF=180°﹣∠BEF=110°;
(2)如图2,连接AD,OE,过B作BG⊥DE于G,
∵∠CFD=∠ABD,
∴cos∠ABD=cos∠CFD=,
在Rt△ABD中,BD=DF=4,
∴AB=6,
∵E是的中点,AB是⊙O的直径,
∴∠AOE=90°,
∵BO=OE=3,
∴BE=3,
∴∠BDE=∠ADE=45°,
∴DG=BG=BD=2,
∴GE==,
∴DE=DG+GE=2+.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=-x+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.
(1)点A的坐标为 .
(2)求这条抛物线所对应的函数表达式.
(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.
(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是BC上一点,连接AE,点F是AE上一点,连接FC,若∠BAE=∠EFC,CF=CD,AB:BC=3:2,AF=4,则FC的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
类型 价格 | A型 | B型 |
进价(元/盏) | 40 | 65 |
标价(元/盏) | 60 | 100 |
(1)这两种台灯各购进多少盏?
(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,点A、B、M、N均落在格点上,在图①、图②给定的网格中按要求作图.
(1)在图①中的格线MN上确定一点P,使PA与PB的长度之和最小
(2)在图②中的格线MN上确定一点Q,使∠AQM=∠BQM.
要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x<0)上,D点在双曲线y=(x>0)上,则k的值为( )
A. 6 B. 5 C. 3 D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com