【题目】在平面直角坐标系中,已知点A(4,0),B(2,0),若点C在一次函数y=x+2的图象上,且△ABC为直角三角形,则满足条件的点C有( )
A.4个B.2个C.3个D.1个
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD被直线BD,DF所截,AB∥CD,BFBD,垂足为B,EG平分BED,CDE50,F25.
⑴求证:EG∥BF;⑵求BDC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出定义,若一个四边形中存在相邻两边的平方和等于任意一条对角线的平方,则称该四边形为勾股四边形.
(1)请在你学过的特殊四边形中,写出两种勾股四边形______、______;
(2)如图,将钝角△ABC绕点B顺时针旋转60°得到△DBE,连接AD、DC、CE,若∠DCE=90°.求证:四边形ABCD为勾股四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2-6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在X轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.
()分别求出直线AB和抛物线的函数表达式;
()设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值;
()如图2,在()条件下,将线段OE绕点O逆时针旋转得到OE',旋转角为α(0°<α<90°),连接E'A、E'B.
①在x轴上找一点Q,使△OQE'∽△OE'A,并求出Q点的坐标;
②求BE'+AE'的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知两地相距,甲、乙两人沿同一公路从 地出发到地,甲骑摩托车,乙骑自行车,如图中分别表示甲、乙离开地的距离 与时间 的函数关系的图象,结合图象解答下列问题.
(1)甲比乙晚出发___小时,乙的速度是___ ;甲的速度是___.
(2)若甲到达地后,原地休息0.5小时,从地以原来的速度和路线返回地,求甲、乙两人第二次相遇时距离地多少千米?并画出函数关系的图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A的坐标为(m,0),点B的坐标为(m﹣2,0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,点C,C′关于直线x=m对称,BC′交直线x=m于点E,若△BOE的面积为4,则点E的坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com