【题目】如图1,已知
中,
,
,点
在
边上,过点
作
的垂线与过
点垂直
的直线交于点
.
![]()
(1)求证:
;
(2)如图2,若点
为线段
的中点,连接
交
于
,请直接写出图中所有的等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,在R△ABC中,∠ACB=90°,AC=6,BC=8,E为AC上一点,且AE=
,AD平分∠BAC交BC于D.若P是AD上的动点,则PC+PE的最小值等于( )
![]()
A.
B.
C.4D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学课上,老师提出如下问题:如何使用尺规完成“过直线l外一点P作已知直线l的平行线”.
小明的作法如下:
①在直线l上取一点A,以点A为圆心,AP长为半径作弧,交直线l于点B;
②分别以P,B为圆心,以AP长为半径作弧,两弧相交于点Q(与点A不重合);
③作直线PQ.所以直线PQ就是所求作的直线.根据小明的作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵AB=AP= = .
∴四边形ABQP是菱形( )(填推理的依据).
∴PQ∥l.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形
中,
,点
为
边上一动点(与点
不重合),连接
将
的两边所在射线
以点
为中心,顺时针旋转
分别交射线
于点
.
![]()
(1)依题意补全图形;
(2)若
,求
的大小(用含
的式子表示) ;
(3)用等式表示线段
与
之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=90°,点D是边BC上的动点,连接AD,点C关于直线AD的对称点为点E,射线BE与射线AD交于点F.
![]()
![]()
(1)在图1中,依题意补全图形;
(2)记
(
),求
的大小;(用含
的式子表示)
(3)若△ACE是等边三角形,猜想EF和BC的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
对于任意正实数a、b,
∵
,
![]()
当且仅当
时,等号成立.
结论:在
均为正实数)中,若
为定值
则
当且仅当
时,a+b有最小值
.
拓展:对于任意正实数
,都有
当且仅当
时,等号成立.
在
(a、b、c均为正实数)中,若
为定值
,则
当且仅当
时,
有最小值![]()
例如:
则
,当且仅当
,即
时等号成立.
又如:若
求
的最小值时,因为
当且仅当
,即
时等号成立,故当
时,
有最小值
.
根据上述材料,解答下列问题:
(1)若a为正数,则当a=______时,代数式
取得最小值,最小值为_____;
(2)已知函数
与函数
,求函数
的最小值及此时
的值;
(3)我国某大型空载机的一次空载运输成本包含三部分:一是基本运输费用,共8100元;二是飞行耗油,每一百公里1200元;三是飞行报耗费用,飞行报耗费用与路程(单位:百公里)的平方成正比,比例系数为0.04,设该空载机的运输路程为
百公里,则该空载机平均每一百公里的运输成本
最低为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+2ax-3与x轴交于A、B(1,0)两点(点A在点B的左侧),与y轴交于点C,将抛物线沿y轴平移m(m>0)个单位,当平移后的抛物线与线段OA有且只有一个交点时,则m的取值范围是_______________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com