【题目】我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2i=(﹣1)i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4ni=(i4)ni=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为( )
A. 0 B. i C. ﹣1 D. 1
科目:初中数学 来源: 题型:
【题目】已知一次函数y=kx+b的图像经过点(-2,4),且与正比例函数y=2x的图像平行.
(1) 求一次函数y=kx+b的解析式;
(2) 求一次函数y=kx+b的图像与坐标轴所围成的三角形的面积;
(3) 若A(a,y1),B(a+b,y2)为一次函数y=kx+b的图像上两个点,试比较y1与y2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育中考前,抽样调查了九年级学生的“1分钟跳绳”成绩,并绘制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.
(1)补全频数分布直方图;
(2)扇形图中m=;
(3)若“1分钟跳绳”成绩大于或等于140次为优秀,则估计全市九年级5900名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( )
A.∠AOC=40° B.∠COE=130° C.∠EOD=40° D.∠BOE=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,G为三角形外一点,且△GBC为等边三角形.
(1)求证:直线AG垂直平分BC;
(2)以AB为一边作等边△ABE(如图2),连接EG、EC,试判断△EGC是否构成直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4、P5、P6,…,则点P2018的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴ 则有0<x<6.又为正整数,则 为正整数.
由2与3互质,可知:x为3的倍数,从而x=3,代入=2.
∴2x+3y=12的正整数解为
问题:
(1)请你写出方程2x+y=5的一组正整数解:_____;
(2)若 为自然数,则满足条件的整数x值有_____个;
A、2 B、3 C、4 D、5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象交y轴于点A,交x轴于点B,点F在射线BA上,过点F作x轴的垂线,点D为垂足,
⑴若OD=6,求F点的坐标;
(2)若OD=12,M在线段FD上,M的纵坐标为m,连接BM,用含有m的代数式表示△BMF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com