精英家教网 > 初中数学 > 题目详情

【题目】某茶具店购进了AB两种不同的茶具,1A种茶具和2B种茶具共需250元;3A种茶具和4B种茶具共需600元.

1)求AB两种茶具每套的进价分别是多少元?

2)由于茶具畅销,茶具店准备再购进AB两种茶具共80套,但这次进货时,工厂对A种茶具每套进价提高了8%,而B种茶具每套按第一次进价的八折,若茶具店本次进货总钱数不超过6240元,则最多可进A种茶具几套?

3)若销售一套A种茶具可获利30元,销售一套B种茶其可获利20元,在(2)的条件下,如何进货可使本次购进茶具获利最多?最多是多少?

【答案】1AB 两种茶具每套的进价分别是100元和75

230

3)进30A种茶具,50B种茶具;获利最多为1900

【解析】

1)根据题意,列出二元一次方程组,从而可以得到AB两种茶具每套的进价分别是多少元;
2)根据题意,可以得到相应的不等式,从而可以得到购买A种茶具数量的取值范围,然后即可得到最多可进A种茶具几套;
3)根据题意,可以得到利润与购买A种数量的函数关系,然后根据一次函数的性质,即可得到如何进货可使本次购进茶具获利最多,最多是多少.

1)设 AB 两种茶具每套的进价分别是x元、y元,根据题意,可得

解得

答:AB 两种茶具每套的进价分别是100元和75元.

2)设购进A种茶具a套,根据题意,可得

解得

答:最多可进 A 种茶具30套.

3)设获利为w元,则

,所以w随的增大而增大.

,∴当 时, (元)

此时,

答:进30A种茶具,50B种茶具,可使本次购进茶具获利最多,获利最多为1900元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图((1)和图(2))

(1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数)

(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店在年至年期问销售一种礼盒,年该商店川万元购进了这种礼盒并且全部售完.年这种礼盒的进价比年下降了/盒,该商店用万元购进了与年相同数量的礼盒也全部售完,礼盒的售价均为/

1年这种礼盒的进价是多少元/盒?

2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从歌曲舞蹈小品相声其它五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:

最喜爱的节目

人数

歌曲

15

舞蹈

a

小品

12

相声

10

其它

b

1)在此次调查中,该校一共调查了   名学生;

2a   b   

3)在扇形计图中,计算歌曲所在扇形的圆心角的度数;

4)若该校共有1200名学生,请你估计最喜爱相声的学生的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】婷婷和她妈妈玩猜拳游戏.规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜.那么,婷婷获胜的概率为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某初中课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):

182

195

201

179

208

204

186

192

210

204

175

193

200

203

188

197

212

207

185

206

188

186

198

202

221

199

219

208

187

224

1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:

谷粒颗数

175≤x185

185≤x195

195≤x205

205≤x215

215≤x225

频数

8

10

3

对应扇形

图中区域

D

E

C

2)如图所示的扇形统计图中,扇形A对应的圆心角为   度,扇形B对应的圆心角为  度;

3)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的二次函数(0)的图象经过点C(01),且与轴交于不同的两点AB,点A的坐标是(10)

1)求c的值和之间的关系式;

2)求的取值范围;

3)该二次函数的图象与直线交于CD两点,设 ABCD四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0l时,求证:S1S2为常数,并求出该常数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,以为直径的于点,交于点延长线上一点,且,连接

1)求证:的切线;

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,ADECEC的延长线于点D,AD交⊙OF,FMABH,分别交⊙O、ACM、N,连接MB,BC.

(1)求证:AC平分∠DAE;

(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.

查看答案和解析>>

同步练习册答案