【题目】在中,,以为直径的交于点,交于点,为延长线上一点,且,连接.
(1)求证:是的切线;
(2)若,,求的长.
【答案】(1)见解析 (2)12
【解析】
(1)连接AD,求出∠PBC=∠BAD,求出∠ABP=90°,根据切线的判定得出即可;
(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据三角形ABC的面积=即可求出BE的长.
(1)证明:连接AD,
∵AB为直径,
∴∠ADB=90°,
∵AB=AC,
∴,
∵
∴∠PBC=∠BAD
∵∠BAD+∠ABD=90°
∴∠PBC+∠ABD=90°
∴AB⊥BP,
∴BP是⊙O的切线.
(2)解:由(1)知∠PBC=∠BAD,∠ADB=90°,
∴,
在Rt△ABD中,∵,AB=15
即,解得
∴
∵∠ADB=90°,AB=AC,
∴
∵AB为直径,
∴∠AEB=90°
∴
即
∴BE=12
科目:初中数学 来源: 题型:
【题目】如图,AB是的直径,C是上一点,D是的中点,为延长线上一点,AE切于A,AC与BD交于点H,与OE交于点F,连结EC.
(1)求证:EC是的切线;
(2)若DH=9,,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某茶具店购进了A、B两种不同的茶具,1套A种茶具和2套B种茶具共需250元;3套A种茶具和4套B种茶具共需600元.
(1)求A、B两种茶具每套的进价分别是多少元?
(2)由于茶具畅销,茶具店准备再购进A、B两种茶具共80套,但这次进货时,工厂对A种茶具每套进价提高了8%,而B种茶具每套按第一次进价的八折,若茶具店本次进货总钱数不超过6240元,则最多可进A种茶具几套?
(3)若销售一套A种茶具可获利30元,销售一套B种茶其可获利20元,在(2)的条件下,如何进货可使本次购进茶具获利最多?最多是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市用3 000元购进某种干果销售,由于销售状况良好,超市又调拨9 000元购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的2倍还多300 kg.如果超市按9元/kg的价格出售,当大部分干果售出后,余下的600 kg按售价的八折售完.
(1)该种干果第一次的进价是多少?
(2)超市销售这种干果共盈利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠使点A落在点G处,延长BG交CD于点F,连接EF,若CF=1,DF=2,则BC的长是( )
A.3B.C.5D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线y=﹣x+2与x轴,y轴分别交于A,B两点,以A为顶点的抛物线经过点B,点P是抛物线上一点,连接OP,AP.
(1)求抛物线的解析式;
(2)若△AOP的面积是3,求P点坐标;
(3)如图②,动点M,N同时从点O出发,点M以1个单位长度/秒的速度沿x轴正半轴方向匀速运动,点N以个单位长度/秒的速度沿y轴正半轴方向匀速运动,当其中一个动点停止运动时,另一个动点也随之停止运动,过点N作NE∥x轴交直线AB于点E.若设运动时间为t秒,是否存在某一时刻,使四边形AMNE是菱形?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上(不与点A,O重合)的一个动点,过点P作PE⊥PB且PE交边CD于点E.
(1)求证:PE=PB;
(2)如图2,若正方形ABCD的边长为2,过点E作EF⊥AC于点F,在点P运动的过程中,PF的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由;
(3)用等式表示线段PC,PA,CE之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为2,∠EAC=60°,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com