精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有_____

abc>0

②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3

2a+b=0

④当x>0时,yx的增大而减小

【答案】②③

【解析】由函数图象可得抛物线开口向下,得到a<0,又对称轴在y轴右侧,可得b>0,根据抛物线与y轴的交点在y轴正半轴,得到c>0,进而得到abc<0,结论错误;由抛物线与x轴的交点为(3,0)及对称轴为x=1,利用对称性得到抛物线与x轴另一个交点为(﹣1,0),进而得到方程ax2+bx+c=0的两根分别为﹣13,结论正确;由抛物线的对称轴为x=1,利用对称轴公式得到2a+b=0,结论正确;由抛物线的对称轴为直线x=1,得到对称轴右边yx的增大而减小,对称轴左边yx的增大而增大,故x大于0小于1时,yx的增大而增大,结论错误.

抛物线开口向下,∴a<0,

对称轴在y轴右侧,>0,∴b>0,

抛物线与y轴的交点在y轴正半轴,∴c>0,

∴abc<0,故错误;

抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,

抛物线与x轴的另一个交点为(﹣1,0),

方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故正确;

对称轴为直线x=1,∴=1,即2a+b=0,故正确;

由函数图象可得:当0<x<1时,yx的增大而增大;

x>1时,yx的增大而减小,故错误;

故答案为②③.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,下列条件中,不能证明△ABC △DCB是( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADABC的角平分线,DEDF分别是ABDACD的高,连接EFADG.下列结论:AD垂直平分EFEF垂直平分ADAD平分EDFBAC60°时,AG=3DG,其中不正确的结论的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,EBC边上一点,且AB=AE

1)求证:△ABC≌△EAD

2)若AE平分∠DAB∠EAC=25°,求∠AED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积=(上底+下底)

公式的探究与应用:

(1)如图1所示,可以求出阴影部分的面积是    

(2)若将图1的阴影部分裁剪下来,重新拼成一个如图2所示的长方形,求此长方形的面积.

(3)比较两图阴影部分的面积,可以得到一个公式:

    

(4)运用公式计算

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解了解节能减排、垃圾分类等知识的普及情况,从该校2000名学生中随机抽取了部分学生进行调查调查,调查结果分为非常了解“、“了解”、“了解较少”、“不了解四类,并将调查结果绘制出以下两幅不完整的统计图,请根据统计图回答下列问题:

(1)本次调查的学生共有   人,估计该校2000名学生中不了解的人数约有   人.

(2)“非常了解4人中有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人去参加环保知识竞赛,请用画树状图和列表的方法,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.

(1)求今年A型车每辆车的售价.

(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元,1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC 中,∠ACB=90°AC=6cmBC=8cm,点 P A 点出发沿 A-C-B 路径向终点运动,终点为 B点;点 Q B 点出发沿 B-C-A 路径向终点运动,终点为 A 点,点 P Q 分别以 1cm/s xcm / s 的运动速度 同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过 P Q PE⊥ l EQF⊥ l F.

(1)如图,当 x 2 时,设点 P 运动时间为 ts ,当点 P AC 上,点 Q BC 上时:

用含 t 的式子表示 CP CQ,则 CP= cmCQ= cm

t 2 ,PEC QFC 全等吗?并说明理由;

(2)请问: x 3 时,PEC QFC 有没有可能全等?若能,直接写出符合条件的 t 的值;若不能,请说明 理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD交于点O.过点CBD的平行线,过点DAC的平行线,两直线相交于点E.

(1)求证:四边形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面积是   

查看答案和解析>>

同步练习册答案