如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.
(1)求证:△ACD≌△BCE;
(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.
![]()
【考点】全等三角形的判定与性质;等边三角形的性质;含30度角的直角三角形;勾股定理.
【专题】几何综合题;压轴题.
【分析】(1)由△ABC与△DCE是等边三角形,可得AC=BC,DC=EC,∠ACB=∠DCE=60°,又由∠ACD+∠DCB=∠ECB+∠DCB=60°,即可证得∠ACD=∠BCE,所以根据SAS即可证得△ACD≌△BCE;
(2)首先过点C作CH⊥BQ于H,由等边三角形的性质,即可求得∠DAC=30°,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.
【解答】(1)证明:∵△ABC与△DCE是等边三角形,
∴AC=
BC,DC=EC,∠ACB=∠DCE=60°,
∴∠ACD+∠DCB=∠ECB+∠DCB=60°,
∴∠ACD=∠BCE,
∴△ACD≌△BCE(SAS);
(2)解:过点C作CH⊥BQ于H,
∵△ABC是等边三角形,AO是角平分线,
∴∠DAC=30°,
∵△ACD≌△BCE,
∴∠PBC=∠DAC=30°,
∴在Rt△BHC中,CH=
BC=
×8=4,
∵PC=CQ=5,CH=4,
∴PH=QH=3,
∴PQ=6.
![]()
【点评】此题考查了全等三角形的判定与性质,等腰三角形、等边三角形以及直角三角形的性质等知识.此题综合性较强,但难度
不大,解题时要注意数形结合思想的应用.
科目:初中数学 来源: 题型:
马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).
(1)求可疑漂浮物P到A、B两船所在直线的距离;
(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,∠C=90°.
(1)试作出边AB的垂直平分线(要求:不写作法,保留作图痕迹).
(2)若边AB的垂直平分线交BC于点E,连结AE,设CE=1,AC=2,则BE=__________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,点P是AB上任一点,∠ABC=∠ABD,从下列各条件中补充一个条件,不一定能推出△APC≌△APD的是( )
![]()
A.BC=BD B.∠ACB=∠ADB C.AC=AD D.∠CAB=∠DAB
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com