【题目】如图,P为边长为6的正方形ABCD的边BC上一动点(P与B、C不重合),Q在CD上,且CQ=BP,连接AP、BQ,将△BQC沿BQ所在的直线翻折得到△BQE,延长QE交BA的延长线于点F.
(1)试探究AP与BQ的数量与位置关系,并证明你的结论;
(2)当E是FQ的中点时,求BP的长。
【答案】(1)见解析:(2)2.
【解析】
(1)证明△ABP≌△BCQ,则∠PAB=∠CBQ,从而证明∠PAB+∠ABQ=90°,进而得证;
(2)由折叠的性质可得∠BQE=∠C=90°,∠QBE=∠QBC,再根据EQ=EF,可得BE垂直平分FQ,从而有BF=BQ,进而可得∠FBE=∠EBQ,再根据∠FBE+∠EBQ+∠QBC=∠ABC=90°,求出∠QBC=30°,可得BQ=2CQ,在Rt△BCQ中,利用勾股定理求出CQ长即可求得答案.
(1)AP=BQ,AP⊥BQ,证明如下:
∵ABCD是正方形,
∴∠ABC=∠C=90°,AB=BC,
又∵BP=CQ,
∴△ABP≌△BCQ(SAS),
∴AP=BQ,∠PAB=∠CBQ,
∵∠CBQ+∠ABQ=∠ABC=90°,
∴∠PAB+∠ABQ=90°,
∴∠AMB=90°,
∴AP⊥BQ;
(2)∵将△BQC沿BQ所在的直线翻折得到△BQE,
∴∠BQE=∠C=90°,∠QBE=∠QBC,
又∵EQ=EF,
∴BE垂直平分FQ,
∴BF=BQ,
∴∠FBE=∠EBQ,
∵∠FBE+∠EBQ+∠QBC=∠ABC=90°,
∴∠QBC=30°,
∴BQ=2CQ,
在Rt△BCQ中,BQ2=BC2+CQ2,即(2CQ)2=62+CQ2,
∴CQ=2,
∵BP=CQ,
∴BP=2 .
科目:初中数学 来源: 题型:
【题目】【问题情景】利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.
例如:张老师给小聪提出这样一个问题:
如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?
小聪的计算思路是:
根据题意得:S△ABC=BCAD=ABCE.
从而得2AD=CE,∴
请运用上述材料中所积累的经验和方法解决下列问题:
(1)【类比探究】
如图2,在ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,
求证:BO平分角AOC.
(2)【探究延伸】
如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PAPB=2AB.
(3)【迁移应用】
如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将两块直角三角尺的顶点叠放在一起.
(1)若∠DCE=25°,求∠ACB的度数.
(2)若∠ACB=140°,求∠DCE的度数.
(3)猜想∠ACB与∠DCE的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=-x+b分别交OA、AB于点C、D,且ΔBOD的面积是4.
(1)求直线AO的解析式;
(2)求直线CD的解析式;
(3)若点M是x轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着科技的迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题.
(1)这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为________;
(2)将条形统计图补充完整;
(3)该校共有2500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
(4)某天甲、乙两名同学都想从“微信”“QQ”“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求知中学有一块四边形的空地ABCD,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,问学校需要投入多少资金买草皮?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,点M从A点出发在线段AB上作匀速运动(不与A、B重合),同时点N从B点出发在线段BC上作匀速运动.
(1)如图1,若M为AB中点,且DM⊥MN.请在图中找出两对相似三角形:
① ∽ _,② ∽ ,选择其中一对加以证明;
(2)①如图2,若AB=5,BC=3点M的速度为1个单位长度/秒,点N的速度为个单位长度/秒,运动的时间为t秒.当t为何值时,△DAM与△MBN相似?请说明理由;
②如果把点N的速度改为a个单位长度/秒,其它条件不变,是否存在a的值,使得△DAM与△MBN和△DCN这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级有1200名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:
(Ⅰ)本次参加跳绳测试的学生人数为___________,图①中的值为___________;
(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com