精英家教网 > 初中数学 > 题目详情

【题目】化简求值:已知xy满足:x2+y24x+6y+130.求代数式[3xy242x+y)(xy)﹣(x3y)(x+3y]÷(﹣y)的值.

【答案】28y+4x92

【解析】

先把已知方程转化成两个非负数的和,利用分负数的性质求出xy的值,再根据整式乘法公式把所求的整式进行化简,然后把xy的值代入计算即可.

x2+y24x+6y+130

∴(x22+y+320

解得:x2y=﹣3

[3xy242x+y)(xy)﹣(x3y)(x+3y(﹣y

[9x26xy+y2)﹣42x2xyy2)﹣(x29y2(﹣y

=(9x26xy+y28x2+4xy+4y2x2+9y2÷(﹣y

=(14y22xy÷(﹣y

=﹣28y+4x

x2y=﹣3时,

原式=﹣28×(﹣3+4×2

92

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某经销商销售一种产品,这种产品的成本价为10/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:

1)求yx之间的函数关系式,并写出自变量x的取值范围;

2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?

3)该经销商想要每天获得150元的销售利润,销售价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC△ABC的高BHCM交于点P

1)求证:PBPC

2)若PB5PH3,求AB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+2(a+1)x+(3a2+4ab+4b2+2)=0有实根,则a、b的值分别为______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)(2x1)(﹣12x);

2xx1)﹣(x+1)(x2);

3

4

5)(2mn2+(﹣2mn2

6)(m2mn+n2)(m2+mn+n2);

7)(a+b)(ab+4ab38a2b2)÷4ab

8)(2x3y6×(3y2x3÷(2x3y7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=ACDE是△ABC内的两点,AD平分∠BAC,∠EBC=E=60°.若BE=7cmDE=2cm,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+ca≠0)的图象与x轴交于点A10),与y轴的交点B在(02)和(01)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc0 4a+2b+c0 4acb28a abc.其中含所有正确结论的选项是(  )

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OAOB为直径作半圆,则图中阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与坐标轴分别交于AB两点,抛物线经过点AB,点P从点B出发,以每秒2个单位长度的速度沿射线BA运动,点Q从点A出发,以每秒1个单位长度的速度沿射线AO运动,两点同时出发,运动时间为t秒.

求此抛物线的表达式;

求当为等腰三角形时,所有满足条件的t的值;

P在线段AB上运动,请直接写出t为何值时,的面积达到最大?此时,在抛物线上是否存在一点T,使得?若存在,请直接写出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案