【题目】如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.
【答案】﹣1.
【解析】
试题假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.
解:∵扇形OAB的圆心角为90°,扇形半径为2,
∴扇形面积为:=π(cm2),
半圆面积为:×π×12=(cm2),
∴SQ+SM =SM+SP=(cm2),
∴SQ=SP,
连接AB,OD,
∵两半圆的直径相等,
∴∠AOD=∠BOD=45°,
∴S绿色=S△AOD=×2×1=1(cm2),
∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).
故答案为:﹣1.
科目:初中数学 来源: 题型:
【题目】某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴送一次外卖称为一单构成,外卖送单补贴的具体方案如下:
外卖送单数量 | 补贴元单 |
每月不超过500单 | 6 |
超过500单但不超过m单的部分 | 8 |
超过m单的部分 | 10 |
若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?
设5月份某“外卖小哥”送餐x单,所得工资为y元,求y与x的函数关系式.
若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】化简求值:已知x,y满足:x2+y2﹣4x+6y+13=0.求代数式[(3x﹣y)2﹣4(2x+y)(x﹣y)﹣(x﹣3y)(x+3y)]÷(﹣y)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推、则正方形OB2018B2019C2019的顶点B2019的坐标是______________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD的纸片,长AD=10厘米,宽AB=8厘米,AD沿点A对折,点D正好落在BC上的点F处,AE是折痕.
(1)图中有全等的三角形吗?如果有,请直接写出来;
(2)求线段EF的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)试说明△ABC是等腰三角形;
(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),
①若△DMN的边与BC平行,求t的值;
②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.
图1 图2 备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A、B两点的坐标分别为(﹣2,2)、(1,8).
(1)求三角形ABO的面积;
(2)若y轴上有一点M,且三角形MAB的面积为10,求M点的坐标;
(3)如图,把直线AB以每秒2个单位的速度向右平移,问经过多少秒后,该直线与y轴交于点(0,﹣2)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,两条交叉的公路上分别有A,B两个车站,要在这两条公路之间的S区域内修一个货运仓库,使它到两条公路的距离相等,且又要到两个车站的距离相等,请你在图中画出这个货运仓库P的位置.(不写已知、求作、作法,只保留作图痕迹)
(2)如图,在正方形网格中,A,B,C均在格点上,在所给的平面直角坐标系中解答下列问题:
①分别写出B,C两点的坐标,及点B关于轴对称的点B′和点C关于轴对称的点C′的坐标;
②在图中画出一个以A,B,C,D为顶点的四边形,使其为轴对称图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AF分别与BD、CE交于点G、H,∠1=54°,∠2=126°.
(1)求证:BD∥CE;
(2)若AC⊥CE于C,交BD于B,FD⊥BD于D,交CE于E,探索∠A与∠F的数量关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com