精英家教网 > 初中数学 > 题目详情

【题目】如图,AC是⊙O的直径,BC交O于点D,E是弧CD的中点,连接AE交BC于点F,∠ABC=2∠EAC.

(1)求证:AB是⊙O的切线;

(2)若 tanB=,BD=6,求CF的长.

【答案】(1)见解析;(2)CF的长为

【解析】

(1)连结AD,如图,根据圆周角定理,由E的中点,得到∠EAC=EAD,由于∠ABC=2EAC,则∠ABC=DAC,再利用圆周角定理得到∠ADB=90°,则∠DAC+ACB=90°,所以∠ABC+ACB=90°,于是根据切线的判定定理得到AB是⊙O的切线;

(2)作FHACH,如图,利用余弦定义,在RtABD中可计算出AD=8,利用勾股定理求得AB=10,在RtACB中可计算出AC=,根据勾股定理求得BC=,则,CD=BC-BD=,接着根据角平分线性质得FD=FH,于是设CF=x,则DF=FH=-x,然后利用平行线得性质由FHAC得到∠HFB=C,所以cosBFH=cosB=,再利用比例性质可求出CF.

(1)证明:连接AD,

AC是⊙O的直径,∴ADBC,∴∠DAC+C=90°,

E的中点,∴∠EAC=EAD,∴∠DAC=2EAC,

∵∠ABC=2EAC,∴∠ABC=DAC,∴∠ABC+C=90°,

∴∠BAC=90°,CAAB,

AB是⊙O的切线;

(2)FHACH,如图,

RtABD中,∵tanB=,BD=6,

AD=8,

AB==10,

RtACB中,∵tanB=

AC=

BC=

CD=BC-BD=

∵∠EAC=EAD,即AF平分∠CAD,

FDAD,FHAB,

FD=FH,

CF=x,则DF=FH=-x,

FHAC,

∴∠HFC=B,

RtCFH中,∵tanCFH=tanB==

,解得x=

CF的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在五张正面分别写有数字﹣2﹣1012的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀.

1)从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于1的概率是

2)先从中任意抽取一张卡片,以其正面数字作为a的值,然后再从剩余的卡片随机抽一张,以其正面的数字作为b的值,请用列表法或画树状图法,求点Qab)在第二象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:

在平面直角坐标系中有不重合的两点和点,小明在学习中发现,若,则轴,且线段的长度为;若,则轴,且线段的长度为

(应用):

1)若点,则轴,的长度为__________

2)若点,且轴,且,则点的坐标为__________

(拓展):

我们规定:平面直角坐标系中任意不重合的两点之间的折线距离为;例如:图1中,点与点之间的折线距离为

解决下列问题:

1)如图1,已知,若,则__________

2)如图2,已知,若,则__________

3)如图3,已知的,点轴上,且三角形的面积为3,则__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为的正方形组成的网格中,的顶点均在格点上,点的坐标分别是关于轴对称的图形为

画出并写出点的坐标为________

写出的面积为________

轴上,使的值最小,写出点的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本题满分8分一个不透明的口袋中装有2个红球记为红球1、红球2、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.

1从中任意摸出1个球,恰好摸到红球的概率是

2先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法画树状图或列表求两次都摸到红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店计划购进AB两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,AB两种型号电动自行车的进货单价分别为2500元、3000元,售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.

1)求出ym之间的函数关系式;

2)该商店如何进货才能获得最大利润?此时最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,为坐标原点,矩形的顶点,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.

1)线段的长度为__________

2)求直线所对应的函数解析式;

3)若点在线段上,在线段上是否存在点,使四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:

①△BO′A可以由△BOC绕点B逆时针旋转60°得到;&

②点O与O′的距离为4;

③∠AOB=150°;

④四边形AOBO′的面积为6+3

⑤S△AOC+S△AOB=6+.

其中正确的结论是_______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+3过点A(-1,0),B(3,0),点M,N为抛物线上的动点,过点MMD∥y轴,交直线BC于点D,交x轴于点E.

(1)求抛物线的表达式;

(2)过点NNF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;

(3)若∠DMN=90°,MD=MN,直接写出点M的坐标.

查看答案和解析>>

同步练习册答案