精英家教网 > 初中数学 > 题目详情
20.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯子的顶端A到墙底端C的距离为2.4米,如果梯子的底端B沿CB向外平移0.8米至B1,求梯子顶端A沿墙下滑的距离AA1的长度.

分析 在直角三角形ABC中,已知AB,AC,根据勾股定理即可求BC的长度,根据B1C=B1B+BC即可求得B1C的长度,在直角三角形A1B1C中,已知A1B1=AB,B1C,即可求得A1C的长度,根据AA1=AC-A1C即可求得A1A的长度.

解答 解:根据题意,在Rt△ABC中,AB=2.5,AC=2.4,
由勾股定理得:
BC=$\sqrt{2.{5}^{2}-2.{4}^{2}}$=0.7,
∵BB1=0.8,
∴B1C=B1B+BC=1.5.
∵在Rt△A1B1C中,A1B1=2.5,B1C=1.5,
∴A1C=$\sqrt{2.{5}^{2}-1.{5}^{2}}$=2,
∴A1A=2.4-2=0.4.
答:那么梯子顶端沿墙下滑的距离为0.4米.

点评 本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求B1C的长度是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.张华记录了今年雨季钱塘江一周内水位变化的情况如下表(正号表示比前一天高,负号表示比前一天低):
星期
水位变化(m)+0.25+0.80-0.40+0.03+0.28-0.36-0.04
(1)本周星期二水位最高,星期日水位最低.
(2)与上周末相比,本周日的水位是上升了还是下降了?(写出计算过程)
(2)请用折线统计图表示钱塘江一周内水位变化的情况.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.抛物线y=-x2+3的对称轴是(  )
A.直线x=-2B.直线x=0C.直线x=-3D.直线x=3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.用因式分解法解下列方程:
(1)4(x-3)2-x(x-3)=0         
(2)7x(x-3)=3x-9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知如图1:抛物线y=ax2-x+c交x轴于A,B两点,交y轴于点C,对称轴为直线x=1,且过点$({2,-\frac{3}{2}})$;
(1)求出抛物线的解析式及点C坐标.
(2)点D为抛物线的顶点,点E(0,1),作直线BE交抛物线于另一点F,点K为点D关于直线BE的对称点,连接KE,求△KEF的面积.
(3)如图2,在(2)的条件下,将△FKE绕着点F逆时针旋转45°得到△FK′E′,点M、N分别为线段FE、BA上的动点,动点M以每秒$\sqrt{2}$个单位长度的速度从F向E运动,动点N以每秒1个单位长度的速度从B向A运动,M、N同时出发,连接ME′,当点N到达A点时,M、N同时停止运动,设运动时间为t秒.在此运动过程中,是否存在时间t,使得点N在线段ME′的垂直平分线上?若存在,求出点N的坐标与t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.为满足市场需求,某超市在春节来临前夕,购进一种品牌汤圆,每盒进价是20元,超市规定每盒售价不得少于25元.根据以往销售经验发现:当售价定为每盒25元时,每天可卖出350盒,每盒售价每提高1元,每天要少卖出10盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当毎盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种汤圆的每盒售价不得高于35元.如果超市想要每天获得不低于3000元的利润,那么超市每天至少销售汤圆多少盒?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.A、B两动点分别在数轴-6、12两位置同时向数轴负方向运动,它们的速度分别是2单位长度/秒、4单位长度/秒,另一动点C也在数轴12的位置向数轴负方向运动,当遇到A后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以8单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是72个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB是圆O的直径,弦AC,BD相交于点E,若∠BEC=58°,且点C是弧BD的中点,则∠ACD=26°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.在一个三角形中,最大的内角应满足的条件是(  )
A.可以小于60°B.不能小于60°C.可以小于45°D.不能小于120°

查看答案和解析>>

同步练习册答案