【题目】如图,中,,,是由绕点按顺时针方向旋转()得到的,连接,相交于点.
(1)求证:;
(2)当四边形为菱形时,求的长.
(3)若顺时针方向旋转,猜想四边形是菱形吗?若是,请写出证明过程;若不是,请说明理由.
【答案】(1)见解析;(2);(3)四边形是菱形,理由见解析
【解析】
(1)先由旋转的性质得,则,即,利用可得,于是根据旋转的定义,可由绕点A按顺时针方向旋转得到,然后根据旋转的性质得到;
(2)由菱形的性质得到,,根据等腰三角形的性质得,根据平行线得性质得,所以,于是可判断△ABE为等腰直角三角形,所以,于是利用求解.
(3)由旋转得到,并,所以和为等腰直角三角形,则可以得到,所以四边形是平行四边形,根据,所以四边形是菱形.
证明:(1)∵是由绕点按顺时针方向旋转得到的,
∴,
∴,
即
∵,
∴,
∴可由绕点A按顺时针方向旋转得到,
∴
(2)∵四边形是菱形,
∴,
∴,
∴
∴为等腰直角三角形
∴
∴
(3)四边形是菱形,理由如下:
∵顺时针方向旋转
∴
∵
∴和为等腰直角三角形
∴
又∵
∴,
∴
∴四边形是平行四边形
又∵
∴四边形是菱形
科目:初中数学 来源: 题型:
【题目】矩形OABC的顶点A(-8,0),C(0,6),点D是BC边上的中点,抛物线y=ax2+bx经过A,D两点,如图所示.
(1)求点D关于y轴的对称点D′的坐标及a,b的值;
(2)将抛物线y=ax2+bx向下平移,记平移后点A的对应点为A1,点D的对应点为D1,当抛物线平移到某个位置时,恰好使得点O是y轴上到A1,D1两点距离之和OA1+OD1最短的一点,求平移后的抛物线解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A'BC’,连接A'C,则A'C的长为( )
A. 6B. 4+2C. 4+3D. 2+3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:有这样一个问题:关于的一元二次方程有两个不相等的且非零的实数根探究,,满足的条件.
小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程对应的二次函数为;
②借助二次函数图象,可以得到相应的一元二次中,,满足的条件,列表如下:
方程根的几何意义:
方程两根的情况 | 对应的二次函数的大致图象 | ,,满足的条件 |
方程有两个不相等的负实根 | ||
____________ | ||
方程有两个不相等的正实根 | ____________ | ____________ |
1)参考小明的做法,把上述表格补充完整;
(2)若一元二次方程有一个负实根,一个正实根,且负实根大于-1,求实数的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.
(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC=5,BC=6,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.
(1)当FG与BC重合时,求正方形DEFG的边长;
(2)设AD=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,并写出x的取值范围;
(3)当△BDG是等腰三角形时,请直接写出AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x22x+3的图象与x轴交于A.B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求点A. B.C的坐标;
(2)判断以点A、C、D为顶点的三角形的形状,并说明理由;
(3)点M(m,0)为线段AB上一点(点M不与点A.B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB经过x轴上的点A(2,0),且与抛物线相交于B、C两点,已知B点坐标为(1,1) .
(1)求直线和抛物线的解析式;
(2)如果D为抛物线上一点,使得△AOD与△OBC的面积相等,求D点坐标。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com