【题目】如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A'BC’,连接A'C,则A'C的长为( )
A. 6B. 4+2C. 4+3D. 2+3
【答案】C
【解析】
连结CC′,A′C交B C′于O点,如图,利用旋转的性质得BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,则可判断△BCC′为等边三角形,接着利用线段垂直平分线定理的逆定理说明A′C垂直平分BC',则BO=BC′=3,然后利用勾股定理计算出A′O,CO,即可求解.
解:连结CC′,A′C交B C′于O点,如图,
∵△ABC绕点B逆时针旋转60°得到△A′BC′,
∴BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,
∴△BCC′为等边三角形,
∴CB=CB′,
而A′B=A′C′,
∴A′C垂直平分BC',
∴BO=BC′=3,
∴A'O==4
CO==3
∴A'C=A'O+CO=4+3
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与双曲线相交于A(-1,2)和B(2,b)两点,与y轴交于点C,与x轴交于点D.
(1)求一次函数的解析式;
(2)根据图象直接写出不等式的解集;
(3)经研究发现:在y轴负半轴上存在若干个点P,使得为等腰三角形。请直接写出P点所有可能的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于为半径作弧,两弧交于点M,N;②作直线MN,且恰好经过点A,与CD交于点E,连接BE,则下列说法错误的是( )
A.B.C.若AB=4,则D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形中,,P为CD边上的一点,过P点作BP的垂线交AD于点E,交BC的延长线于点F.
(1)判断线段DE、CF、CP之间的数量关系,并说明理由.
(2)若,,写出y与x之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】投资8000元围成一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造,墙长35m,平行于墙的边的费用为100元/m,垂直于墙的边的费用为250元/m,设平行的墙的边长为xm.
(1)设垂直于墙的一边长为ym,直接写出y与x之间的函数关系式;
(2)若菜园面积为300m2,求x的值;
(3)求菜园的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某店销售一种小工艺品.该工艺品每件进价12元,售价为20元;每周可售出40件.经调查发现,若把每件工艺品的售价提高1元,就会少售出2件.设每件工艺品售价提高元,每周从销售这种工艺品中获得的利润为元.
(1)填空:每件工艺品售价提高元后的利润为 元,每周售出工品 件,关于的函数关系式为 ;
(2)若,则每件工艺品的售价应确定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点,,.
(1)求抛物线的解析式和对称轴;
(2)是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);
(3)在第四象限的抛物线上是否存在点,使四边形是以为对角线且面积为的平行四边形?若存在,请求出点坐标,若不存在请说明理由.(请在图2中探索)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,是由绕点按顺时针方向旋转()得到的,连接,相交于点.
(1)求证:;
(2)当四边形为菱形时,求的长.
(3)若顺时针方向旋转,猜想四边形是菱形吗?若是,请写出证明过程;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=kx+b与反比例函数y2 =图象在第一、第三象限分别交于A(3,4),B(a,-2)两点,直线AB与y轴,x轴分别交于C,D两点.
(1)求一次函数和反比例函数的解析式;
(2)比较线段AD、BC大小,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com