精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD内接于⊙OAB=ACBDAC,垂足为E,点FBD的延长线上,且DF=DC,连接AFCF.

(1)求证:∠BAC=2DAC

(2)AF10BC4,求tanBAD的值.

【答案】(1)见解析;(2) tanBAD=.

【解析】

1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到=,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC180°BAC)=90°BAC,∠ADB90°CAD,从而得到BAC=∠CAD,即可证得结论;

2)易证得BCCF4,即可证得AC垂直平分BF,证得ABAF10,根据勾股定理求得AECEBE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角形求得tanBAD的值.

解:(1)∵ABAC

=,∠ABC=∠ACB

∴∠ABC=∠ADB,∠ABC180°BAC)=90°BAC

BDAC

∴∠ADB90°DAC

BAC=∠DAC

∴∠BAC2DAC

(2)DF=DC

∴∠BFC=BDC=BAC=FBC,

CB=CF,

BDAC

AC是线段BF的中垂线,AB= AF=10, AC=10.

BC4

AEx, CE=10x,

AB2AE2=BC2CE2, 100x2=80(10x)2, x=6

AE=6,BE=8,CE=4,

DE===3,

BDBEDE3811

DHAB,垂足为H

ABDHBDAE

DH

BH

AHABBH10

tanBAD===.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2020年伊始,全国发生了传播速度快、感染范围广、防控难度大的新冠肺炎疫情.根据教育部提出的2020年春节延期开学,“停课不停学”的相关要求,很多学校开展了线上授课相关工作.为了更好地提高学生线上授课的效果,某中学进行了线上授课问卷调查.其中一项调查是:你认为影响师生互动的最主要因素是A.教师的授课理念;B.网络配麦等硬件问题;C.科目特点;D.学生的配合情况,针对这个题目,问卷时要求每位同学必须且只能选择其中一项.现随机抽取了若干名学生的调查问卷,将所得数据进行整理,制成如下条形统计图和扇形统计图.

请你根据以上提供的信息,解答下列问题:

1)补全上面的条形统计图和扇形统计图;

2)所抽取学生中认为影响师生互动最主要因素的众数为____________

3)已知该校有2400名学生,请你估计该校学生中认为影响师生互动的最主要因素是“C.科目特点”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )

A. n mileB.60 n mileC.120 n mileD.n mile

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mxt=0t为实数)在1x5的范围内有解,则t的取值范围是(

A.t>﹣5B.5t3C.3t≤4D.5t≤4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca≠0)中的xy的部分对应值如下表:

x

3

2

1

0

1

2

3

4

y

12

5

0

3

4

3

0

5

给出以下结论:(1)二次函数yax2+bx+c有最小值,最小值为﹣3;(2)当﹣x2时,y0;(3)已知点Ax1y1)、Bx2y2)在函数的图象上,则当﹣1x103x24时,y1y2.上述结论中正确的结论个数为(  )

A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,边上的中线,点在射线.

猜想:如图①,点边上, 相交于点,过点,交的延长线于点,则的值为 .

探究:如图②,点的延长线上,的延长线交于点 ,求的值.

应用:在探究的条件下,若,则 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的顶点为,与轴相交于点,对称轴为直线,点是线段的中点.

1)求抛物线的表达式;

2)写出点的坐标并求直线的表达式;

3)设动点分别在抛物线和对称轴l上,当以为顶点的四边形是平行四边形时,求两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中.抛物线y=x2+4x+3y轴交于点A,抛物线的对称轴与x轴交于点B,连接AB,将△OAB绕着点B顺时针旋转得到△O'A'B

1)用配方法求抛物线的对称轴并直接写出AB两点的坐标;

2)如图1,当点A'第一次落在抛物线上时,∠O'BO=nOAB,请直接写出n的值;

3)如图2,当△OAB绕着点B顺时针旋转60°,直线A'O'x轴于点M,求△A'MB的面积;

4)在旋转过程中,连接OO',当∠O'OB=OAB时.直线A'O'的函数表达式是  

查看答案和解析>>

同步练习册答案