精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的弦,AB4,点P上运动(点P不与点AB重合),且∠APB30°,设图中阴影部分的面积为y

1)⊙O的半径为

2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.

【答案】14;(2y=2xπ4 (0x≤24)

【解析】

1)根据圆周角定理得到AOB是等边三角形,求出⊙O的半径;
2)过点OOHAB,垂足为H,先求出AH=BH=AB=2,再利用勾股定理得出OH的值,进而求解.

1)解:(1)∵∠APB=30°
∴∠AOB=60°,又OA=OB
∴△AOB是等边三角形,
∴⊙O的半径是4

2)解:过点OOHAB,垂足为H

则∠OHA=∠OHB90°

∵∠APB30°

∴∠AOB2APB60°

OA=OBOHAB

AH=BH=AB=2

RtAHO中,∠AHO90°AO4AH2

OH2

y×16 π×4×2×4×x

=2xπ4 (0x≤24).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.

学生立定跳远测试成绩的频数分布表

分组

频数

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

请根据图表中所提供的信息,完成下列问题:

(1)表中a=   ,b=   ,样本成绩的中位数落在   范围内;

(2)请把频数分布直方图补充完整;

(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点CD为监测点,已知点CDB在同一直线上,且ACBCCD400米,tanADC2,∠ABC35°

1)求道路AB段的长(结果精确到1米)

2)如果道路AB的限速为60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736cos35°≈0.8192tan35°≈0.7002

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB为⊙O的弦,过点OAB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB

1)判断直线BD与⊙O的位置关系,并证明你的结论;

2)若⊙O的半径等于4tanACB,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxc的图像如图所示,则下列结论正确的个数有(

c0;②b24ac0;③ abc0;④当x>-1时,yx的增大而减小.

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】受新型冠状病毒肺炎影响,学校开学时间延迟,为了保证学生停课不停学,某校开始实施网上教学,张老师统计了本班学生一周网上上课的时间(单位:分钟)如下:200180150200250.关于这组数据,下列说法正确的是( )

A.中位数是200B.众数是150C.平均数是190D.方差为0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点的坐标为,点轴正半轴上,且,以为边在第一象限内作正方形,且双曲线经过点

1)求的值;

2)将正方形沿轴负方向平移得到正方形,当点恰好落在双曲线上时,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点为坐标原点,抛物线轴交于点(点在点的左侧),与轴正半轴交于点

1)如图1,求的值;

2)如图2,抛物线的顶点坐标是,点是第一象限抛物线上的一点,连接交抛物线的对称轴于点,设点的横坐标是,线段的长为,求的函数关系式;

3)如图3,在(2)的条件下,当时,过点轴交抛物线于点,点轴下方抛物线上的一个动点,连接轴于点,直线经过点于点,连接,过点于点,若,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形,连接.若绕点旋转,当最大时,__________

查看答案和解析>>

同步练习册答案