精英家教网 > 初中数学 > 题目详情

如图,在边长为3的正方形ABCD中,点M在边AD上,且AM=AD,延长MD至点E,使ME=MB,以DE为边作正方形DEFG,点G在边CD上,则DG 的长为      


【考点】正方形的性质,勾股定理。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


均匀地向一个容器注水,最后把容器注满。在注水过程中,水面高度h随时间t的变化规律如图所示,则这个容器的形状是下列的【    】

 A.      B.       C.      D.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,已知二次函数图像的顶点M在反比例函数上,且与轴交于A,B两点。

(1)若二次函数的对称轴为,试的值,并求AB的长;

(2)若二次函数的对称轴在轴左侧,与轴的交点为N,当NO+MN取最小值时,试求二次函数的解析式。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知△ABC中,AB=,AC=,BC=6,点M在AB边上,且AM=BM,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长。

查看答案和解析>>

科目:初中数学 来源: 题型:


四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有    

    A.1组          B.2组         C.3组          D.4组

查看答案和解析>>

科目:初中数学 来源: 题型:


类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若=3,求的值.

(1)尝试探究

在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________,

CG和EH的数量关系是________,

的值是________.

(2)类比延伸:

如图2,在原题条件下,若=m(m>0)则的值是________(用含有m的代数式表示),试写出解答过程.

(3)拓展迁移:

如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若=a,=b(a>0,b>0)则的值是________(用含a、b的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E, AB=2cm.则图中阴影部分面积为        cm2

查看答案和解析>>

科目:初中数学 来源: 题型:


已知抛物线的顶点在坐标轴上.

(1)求的值;

(2)时,抛物线向下平移个单位后与抛物线关于轴对称,且过点,求的函数关系式;

(3)时,抛物线的顶点为,且过点.问在直线 上是否存在一点使得△的周长最小,如果存在,求出点的坐标, 如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

(1)求点B,C的坐标;

(2)判断△CDB的形状并说明理由;

(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

同步练习册答案