精英家教网 > 初中数学 > 题目详情

【题目】已知△ABC在平面直角坐标系中的位置如图所示,直线l过点M(3,0)且平行于y轴.

(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标.

(2)如果点P的坐标是(﹣a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求P1P2的长.(用含a的代数式表示)

(3)通过计算加以判断,PP2的长会不会随点P位置的变化而变化.

【答案】(1)详见解析,A1(0,4)、B1(2,2)C1(1,1);(2)当0<a≤3时,P1P2=6﹣2a;当a>3时,P1P2=2a﹣6;(3)PP2的长不会随点P位置的变化而变化.

【解析】

(1)如图1,分别作出点B、C关于y轴的对称点,再顺次连接可得;(2)PP1关于y轴对称,利用关于y轴对称点的特点:纵坐标不变,横坐标变为相反数,求出P1的坐标,再由直线l的方程为直线x=3,利用对称的性质求出P2的坐标,即可PP2的长(本题分0<a≤3a>3两种情况求解);(3)根据以上两种情况,分别利用PP2=PP1+P1P2、PP2=PP1﹣P1P2计算可得结论.

(1)如图,△A1B1C1即为所求,

A1(0,4)、B1(2,2)C1(1,1);

(2)①如图2,当0<a≤3时,

∵PP1关于y轴对称,P(﹣a,0),

∴P1(a,0),

∵P1P2关于l:直线x=3对称,

P2(x,0),可得: =3,即x=6﹣a,

∴P2(6﹣a,0),

PP2=6﹣a+a=6.

∴P1P2=6﹣2a;

如图3,当a>3时,

∵PP1关于y轴对称,P(﹣a,0),

∴P1(a,0),

∵P1P2关于l:直线x=3对称,

P2(x,0),可得: =3,即x=6+a,

∴P2(6+a,0),

PP2=6+a﹣a=6.

∴P1P2=2a﹣6.

综上所述,当0<a≤3时,P1P2=6﹣2a;当a>3时,P1P2=2a﹣6;

(3)当0<a≤3时,PP2=PP1+P1P2=2a+6﹣2a=6;

a>3时,PP2=PP1﹣P1P2=2a﹣(2a﹣6)=6;

∴PP2的长不会随点P位置的变化而变化.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线经过坐标原点O,点A(6,﹣6 ),且以y轴为对称轴.

(1)求抛物线的解析式;
(2)如图2,过点B(0,﹣ )作x轴的平行线l,点C在直线l上,点D在y轴左侧的抛物线上,连接DB,以点D为圆心,以DB为半径画圆,⊙D与x轴相交于点M,N(点M在点N的左侧),连接CN,当MN=CN时,求锐角∠MNC的度数;

(3)如图3,在(2)的条件下,平移直线CN经过点A,与抛物线相交于另一点E,过点A作x轴的平行线m,过点(﹣3,0)作y轴的平行线n,直线m与直线n相交于点S,点R在直线n上,点P在EA的延长线上,连接SP,以SP为边向上作等边△SPQ,连接RQ,PR,若∠QRS=60°,线段PR的中点K恰好落在抛物线上,求Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.

(1)求线段CD的长;
(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;
(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4 ,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F
(1)求证:
(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;
(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个大小不同的等腰直角三角形三角板按图1所示的位置放置图2是由它抽象出的几何图形AB=ACAE=ADBAC=EAD=90°BCE在同一条直线上连接DC

1请找出图2中与ABE全等的三角形并给予证明;

2证明:DCBE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具商店销售功能相同的两种品牌的计算器,购买2A品牌和3B品牌的计算器共需156元;购买3A品牌和1B品牌的计算器共需122元。

1)求这两种品牌计算器的单价;

2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售。设购买个x个A品牌的计算器需要1元,购买B品牌的计算器需要2元,分别求出1、y2关于的函数关系式

3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知MB=ND,MBA=NDC,下列条件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.
(1)求tan∠DBC的值;
(2)求证:四边形OBEC是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).

①先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1 , 试在图中画出Rt△A1B1C1 , 并写出点B1的坐标;
②再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2 , 试在图中画出Rt△A2B2C2 . 并写出点B2的坐标.

查看答案和解析>>

同步练习册答案