精英家教网 > 初中数学 > 题目详情

【题目】1)已知(a+b2=7,(a-b2=4,求a2+b2ab的值.

2)分解因式:

x2-8xy+16y2

②(x+y+12-x-y+12

【答案】1a2+b2=5.5ab=;(2)①(x-4y2;②4yx+1

【解析】

1)由=a+b2+a-b2ab=a+b2-a-b2,整体代入即可求解.

2)①利用完全平方公式直接进行分解因式,②先利用平方差公式,再进行化简即可.

解:(1)∵(a+b2=a2+b2+2ab=7①,(a-b2=a2+b2-2ab=4②,

∴①+②得,a2+b2=5.5

-②得:ab=

2)①原式=x-4y2

②原式=x+y+1+x-y+1)(x+y+1-x+y-1=4yx+1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种购买个人年票(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分ABC三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6.

1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.

2)一年中进入该公园超过多少次时,A类年票比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12AB=10,则AE的长为(  )

A. 13B. 14C. 15D. 16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC 中,AD BC 边上的中线.

(1)画出与ACD 关于点 D 成中心对称的三角形;

(2)找出与 AC 相等的线段;

(3)探索:ABC 中,AB+AC 与中线 AD 之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=15°且AE=AC,连接GE.将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是边长为的正方形,矩形AEFG中AE=4,∠AFE=30°。将矩形AEFG绕点A顺时针旋转15°得到矩形AMNH(如图2),此时BD与MN相交于点O.

(1)求∠DOM的度数;

(2)图2中,求D、N两点间的距离;

(3)若将矩形AMNH绕点A再顺时针旋转15°得到矩形APQR,此时点B在矩形APQR的内部、外部还是边上?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABCD中,CD=2AD,BEAD于点E,FDC的中点,连结EF、BF,下列结论:①∠ABC=2ABF;EF=BF;S四边形DEBC=2SEFB④∠CFE=3DEF,其中正确结论的个数共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知锐角ABC内接于⊙O,连接AO并延长交BC于点D

1)求证:ACB+BAD=90°

2)过点DDEABE,若∠ADC=2ACB.求证:AC=2DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB平分∠CBD,∠DBC=60°,∠C=∠D

1)若ACBC,求∠BAE的度数;

2)请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;

3)如图,过点DDGBCCE于点F,当∠EFG2DAE时,求∠BAD的度数.

查看答案和解析>>

同步练习册答案