【题目】如图,在中,,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动
(1)连接,线段的长随的变化而变化,当最大时,______.
(2)当的边与坐标轴平行时,______.
【答案】4
【解析】
(1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;
(2)根据等腰三角形的性质求出CD,分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.
(1),
,
当O,D,C共线时,OC取最大值,此时OD⊥AB.
∵,
∴△AOB为等腰直角三角形,
∴ ;
(2)∵BC=AC,CD为AB边的高,
∴∠ADC=90°,BD=DA=AB=4,
∴CD==3,
当AC∥y轴时,∠ABO=∠CAB,
∴Rt△ABO∽Rt△CAD,
∴,即,
解得,t=,
当BC∥x轴时,∠BAO=∠CBD,
∴Rt△ABO∽Rt△BCD,
∴,即,
解得,t= ,
则当t=或时,△ABC的边与坐标轴平行.
故答案为:t=或.
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).
(1)求小敏到旗杆的距离DF.(结果保留根号)
(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知,,,点在直线上,把沿着直线翻折,点落在点处,联结,如果直线与直线所构成的夹角为60°,那么点的坐标是____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:P(-1,0),Q(0,-2).
(1)求直线PQ的函数解析式;
(2)如果M(0,)是线段OQ上一动点,抛物线经过点M和点P,
①求抛物线与轴另一交点N的坐标(用含,的代数式表示);
②若PN=是,抛物线有最大值+1,求此时的值;
③若抛物线与直线PQ始终都有两个公共点,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形是正方形,且,点与重合,以为圆心,作半径长为5的半圆,交于点,交于点,交的延长线于点.
发现是半圆上任意一点,连接,则的最大值为______;
思考如图2,将半圆绕点逆时针旋转,记旋转角为
(1)当时,求半圆落在正方形内部的弧长;
(2)在旋转过程中,若半圆与正方形的边相切时,请直接写出此时点到切点的距离.(注:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,过点作于点,点是线段上一动点,过三点作交于点,过点作交的延长线于点,交于点.
(1)求证:四边形为平行四边形.
(2)当时,求的长.
(3)在点整个运动过程中,
①当中满足某两条线段相等,求所有满足条件的的长.
②当点三点共线时,交于点,记的面积为,的面积为,求的值. (请直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片中,,,折叠纸片使点落在边上的处,折痕为.过点作交于,连接.
(1)求证:四边形为菱形;
(2)当点在边上移动时,折痕的端点,也随之移动.
①当点与点重合时(如图),求菱形的边长;
②若限定,分别在边,上移动,求出点在边上移动的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com