【题目】如图,一段抛物线;,记为它与轴交于点;将绕点旋转得,交轴于点;将,绕点旋转得,交轴于点,……,若是其中某段抛物线上一点,则__________.
【答案】0
【解析】
求出抛物线C1与x轴的交点坐标,观察图形可知第偶数号抛物线都在x轴下方,再根据向右平移横坐标相加表示出抛物线C673的解析式,然后把点P的横坐标代入计算即可得解.
解:由一段抛物线为,
∴图象与x轴交点坐标为:(0,0),(3,0);
∵将C1绕点A1旋转180°得C2,交x轴于点A2,
此时与x轴交点坐标为:(3,0),(6,0),C2图像在x轴下方;
将C2绕点A2旋转180°得C3,交x轴于点A3,
此时与x轴交点坐标为:(6,0),(9,0),C3图像在x轴上方;
……
如此进行下去,直至得C673.
∴C673与x轴的交点横坐标为(2016,0),(2019,0),且图象在x轴上方,
∴C673的解析式为:,
∴点P在C673的图像上,
当时,,
∴;
故答案为:0.
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:
如果函数 y=f(x)满足:对于自变量 x 的取值范围内的任意 x1,x2,
(1)若 x1<x2,都有 f(x1)<f(x2),则称 f(x)是增函数;
(2)若 x1<x2,都有 f(x1)>f(x2),则称 f(x)是减函数.
例题:证明函数f(x)= (x>0)是减函数.
证明:设 0<x1<x2,
f(x1)﹣f(x2)=.
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴>0.即 f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函数 f(x)= (x>0)是减函数.
根据以上材料,解答下面的问题:
已知函数.
f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=.
(1)计算:f(﹣3)= ,f(﹣4)= ;
(2)猜想:函数是 函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明做游戏:游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘的指针所指数字都为x2﹣4x+3=0的根时,他就可以获得一次为大家表演节目的机会.
(1)利用树状图或列表的方法(只选一种)表示出游戏可能出现的所有结果;
(2)求小明参加一次游戏就为大家表演节目的机会的概率是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.
(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;
(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为 ;
(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,为了躲避台风,一轮船一直由西向东航行,上午点,在处测得小岛的方向是北偏东,以每小时海里的速度继续向东航行,中午点到达处,并测得小岛的方向是北偏东,若小岛周围海里内有暗礁,问该轮船是否能一直向东航行?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于两点,与轴交于点,连接.点是第一象限内抛物线上的一个动点,点的横坐标为.
(1)求此抛物线的表达式;
(2)过点作轴,垂足为点,交于点.试探究点P在运动过程中,是否存在这样的点,使得以为顶点的三角形是等腰三角形.若存在,请求出此时点的坐标,若不存在,请说明理由;
(3)过点作,垂足为点.请用含的代数式表示线段的长,并求出当为何值时有最大值,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题的逆命题是真命题的是( )
A.两直线平行,同位角相等
B.等边三角形是锐角三角形
C.如果两个实数是正数,那么它们的积是正数
D.全等三角形的对应角相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是矩形中边上一点,沿折叠为,点落在上.
(1)求证:;
(2)若,求的值;
(3)设,是否存在的值,使与相似?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com