【题目】探究:如图①点E、F分别在正方形ABCD的边BC、CD上,连结AE、AF、EF,将△ABE、△ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形.若BE=2,DF=3,求AB的长;
拓展:如图②点E、F分别在四边形BACD的边BC、CD上,且∠B=∠D=90°.连结AE、AF、EF将△ABE、△ADF分别沿AE、AF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形.若∠EAF=30°,AB=4,则△ECF的周长是 .
【答案】探究:AB=6;拓展:.
【解析】
探究:设:正方形的边长为a,则EC=a-2,CF=a-3,则由勾股定理得:EF2=EC2+CF2,即可求解;
拓展:证明△ABC≌△ADC,∠BAE+∠DAF=∠EAF=30°,则∠BAD=60°,∠BAC=∠DAC=(∠BAD)=30°,CD=BC=ABtan∠BAC,即可求解.
探究:
设:正方形的边长为a,则EC=a﹣2,CF=a﹣3,
则EF=BE+DF=5,则EF2=EC2+CF2,
即:25=(a﹣2)2+(a﹣3)2,解得:a=6或﹣1(舍去﹣1),
故AB=6;
拓展:
由题意得:AB=CD=4,连接AC,
∵AB=CD,AC=AC,∴△ABC≌△ADC,
∴BC=CD,∠BAC=∠DAC,
∵点E、F分别在四边形BACD的边BC、CD上,
故:∠BAE+∠DAF=∠EAF=30°,则∠BAD=60°,
∴∠BAC=∠DAC=(∠BAD)=30°,
CD=BC=ABtan∠BAC=4×=,
△ECF的周长=EF+EC+FC=AE+FD+EC+FC=AC+CD=2CD=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)直接写出当x>0时,的解集.
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,如图,AB=10,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.
(1)求证:BP=BF;(2)当BP=8时,求BE·EF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种进价为每件40元的商品,通过调查发现,当销售单价在40元至65元之间()时,每月的销售量(件)与销售单价(元)之间满足如图所示的一次函数关系.
(1)求与的函数关系式;
(2)设每月获得的利润为(元),求与之间的函数关系式;
(3)若想每月获得1600元的利润,那么销售单价应定为多少元?
(4)当销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程组解应用题.
某校七年级学生在三月份参加了“学雷锋,献爱心”活动.活动中,1班,2班和3班的同学为希望小学的学生购买了学习用品:书包和词典.已知1班、2班购买的情况如下表:
书包(个) | 词典(本) | 累计花费(元) | |
七年级1班 | 3 | 2 | 124 |
七年级2班 | 2 | 3 | 116 |
活动中,3班购买了4个书包和6本词典,问:3班共花费了多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在双曲线y= 上,点B在双曲线y=(k≠0)上,AB∥x轴,交y轴于点C,若AB=2AC,则k的值为( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BC是⊙O的直径,AD切⊙于点A,CD∥OA交⊙O于另一点E.
(1)求证:△ACD∽△BCA;
(2)若A是⊙O上一动点,则
①当∠B=_____时,以A,O,C,D为顶点的四边形是正方形;
②当∠B=_____时,以A,O,C,E为顶点的四边形是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五一期间,育华中学组织学生参加“交通安全知识”网络测试活动该校教务处对九年级全体学生的测试成绩进行了统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成如下不完整的统计图.请你根据图中所给的信息解答下列问题:
(1)该校九年级共有名学生,并把图1中的条形统计图补充完整.
(2)已知该市共有12000名九年级学生参加了这次“交通安全知识”网络测试,请你根据该校九年级成绩估计该市九年级学生在这次测试中成绩为优秀的人数.
(3)教务处从该校九年级成绩前5名(2男3女)的学生中随机抽取2名参加复赛,请用画树状图或列表法求出抽到“一男一女”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(提出问题)如图1,在等边三角形ABC内一点P,PA=3,PB=4,PC=5.求∠APB的度数?小明提供了如下思路:
如图2,将△APC绕A点顺时针旋转60°至△AP'B ,则AP'=AP=3,P'C=PB=4,∠P'AC=∠PAB ,所以∠P'AC+∠CAP=∠PAC+∠BAP ,即∠P'AP=∠BAC=60° ,所以△AP'P为等边三角形 ,所以∠A P'P=60° ,
……按照小明的解题思路,
易求得∠APB= ;
(尝试应用)
如图3,在等边三角形ABC外一点P,PA=6,PB=10,PC=8.求∠APC的度数?
(解决问题)
如图4,平面直角坐标系xoy中,直线AB的解析式为y=-x+b(b>0),在第一象限内一点P,满足PB:PO:PA=1:2:3,则∠BPO= 度(直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com