精英家教网 > 初中数学 > 题目详情

【题目】如图,以AB为直径的半圆O内有一条弦AC,点E是弦AC的中点,连接BE,并延长交半圆O于点D,若OB2OE1,则∠CDE的度数是_______________.

【答案】30°

【解析】

连接BC.构建∠CAB与∠CDE所对的圆周角.根据三角形的中位线定理,求得AEO是直角三角形,然后在直角三角形AEO中由30°角所对的直角边是斜边的一半,求得∠CAB=30°;最后根据圆周角定理求得∠CDE=30°

连接BC

AB是直径,

∴∠ACB=90°

E是弦AC的中点,O是直径AB的中点,

OEBC

OEAC

OB=2OE=1

AO=2

AO=2OE

∴∠CAB=30°30°角所对的直角边是斜边的一半);

∴∠CDE=30°(同弧所对的圆周角相等);

故答案是:30°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,边上的中线,点关于直线的对称点是点,连接并延长到点,使,连接.,点的距离,则四边形的周长为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点P在函数yx0)的图象上从左向右运动,PAy轴,交函数y=﹣x0)的图象于点AABx轴交PO的延长线于点B,则△PAB的面积(  )

A.逐渐变大B.逐渐变小C.等于定值16D.等于定值24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在锐角ABC中,D,E分别为AB,BC中点,F为AC上一点,且AFE=A,DMEF交AC于点M.

(1)求证:DM=DA;

(2)点G在BE上,且BDG=C,如图②,求证:DEG∽△ECF;

(3)在图②中,取CE上一点H,使CFH=B,若BG=1,求EH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣41),B(﹣23),C(﹣12).

1)画出ABC关于原点O成中心对称的ABC,点ABC分别是点ABC的对应点.

2)求过点B的反比例函数解析式.

3)判断AB的中点P是否在(2)的函数图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC90o,以BC为直径的半圆⊙OAC于点D,点EAB的中点,连接DE并延长,交CB延长线于点F.

(1)判断直线DF与⊙O的位置关系,并说明理由;

(2)CF8DF4,求⊙O的半径和AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轮船在A处观测灯塔C位于北偏东70o方向上,轮船从A处以每小时30海里的速度沿南偏东50o方向匀速航行,1小时后到达码头B处,此时观测灯塔C位于北偏东25o方向上,求灯塔C与码头B之间的距离(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.

月份x

3

4

5

6

售价y1/

12

14

16

18

1)求y1x之间的函数关系式.

2)求y2x之间的函数关系式.

3)设销售每千克猪肉所获得的利润为w(元),求wx之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O是坐标原点,BC两点的坐标分别为(3,-1)、(21).

1)以O点为位似中心在y轴的左侧将OBC放大到两倍(即新图与原图的相似比为2),画出图形;

2B点的对应点B′的坐标是 C点的对应点C′的坐标是

3)在BC上有一点Pxy),按(1)的方式得到的对应点P′的坐标是

查看答案和解析>>

同步练习册答案